一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:50:14
一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程
一道双曲线题,急,
设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程
一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程
此题难在哪?值得去问?
一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程
一道高中双曲线题 急!F1,F2是双曲线X^2/4 - Y^2 = 1(a>0,b>0)的两个焦点.P在双曲线上.当F1 P F2的面积为1时,向量P F1*向量P F2的值为()A.0 B.1 C.1/2 D.2要详细的解答步骤.谢谢了~
一道双曲线的高中题目7、设 F1,F2、 分别为双曲线 X2/a2-y2/b2=1的左、右焦点.若在双曲线右支上存在点P ,满足|PF1|=|F1F2|,且F2 到直线PF1 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为
一道数学题,双曲线的虚轴长为4,离心率e=二分之根号六,f1,f2分别为它的左、右焦点,若过f1的直线与双权双曲线的虚轴长为4,离心率e=二分之根号六,f1,f2分别为它的左、右焦点,若过f1的直
求一道解析几何详细解法双曲线C的左右焦点分别为F1,F2,且F2恰好为抛物线y方=4x的焦点,设双曲线C与 该抛物线的一个交点为A,若AF1F2是以AF1为底边的等腰三角形,则双曲线C的离心 率为 答案是(
设 分别为双曲线 的左右焦点,为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足 ,则设F1、F2 分别为双曲线X^2/a^2 - Y^2/b^2 = 1(a>0,b>0) 的左右焦点,A 为双曲线的左顶点,以 F1、F2
【高中数学=】已知F1、F2分别为双曲线 的左、右焦点,若在右支上存在点A,使得F2到直线AF1的距离,-已知F1、F2分别为双曲线的左、右焦点,若在右支上存在点A,使得F2到直线AF1的距离为2a,则该双曲
一道简单的双曲线题,赶时间,设双曲线x²/a²-y²/b²=1(a>0,b>0)的左右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N,若△MNF1为正三角形,则该双曲线的离心率为?
急如图所示,下列三图中的多边形均为正多边形,M、N是所在边的中点,双曲线均以图中的F1,F2为F2为焦点设图中的双曲线的离心率分别为e1,e2,e3,则()A.e1>e2>e3B.e1<e2<e3C.e1=e3<e2D.e1=e3>e2
设椭圆x方/a方+y/m方和双曲线y/3方-x方=1的公共焦点分别为F1,F2,p 是这两条双曲线的一个交点...设椭圆x方/a方+y/m方和双曲线y/3方-x方=1的公共焦点分别为F1,F2,p 是这两条双曲线
一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x
设p点为双曲线x^2-y^2/12=1上的一点,F1,F2是该双曲线的两个焦点若│PF1│:│PF2│=3:2则叫△PF1,F2的面1.这是一道双曲线题2.需要解题的步骤要全面
|设双曲线x²/4-y²/3=1的左右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|BF2|+|AF2|的最小值为
设双曲线x^2/4-y^2/3=1的左右焦点分别为F1 F2,过F1的直线L交双曲线左支于AB两点,则BF2+AF2的最小值为?
设双曲线x2/9-y2/16=1的左、右焦点分别为F1和F2,过F1的直线与双曲线坐支交于A,B,且∣AB∣=12,则△ABF2的周长为
请问各位一道双曲线的参数方程题,麻烦前辈高人们帮忙看下~问题为:设P为等轴双曲线x^2-y^2=1上的一点,F1和F2为两个焦点,证明:|F1P|·|F2P|=|OP|^2.下面是我的证明过程:设双曲线的参数方程为x=
请问赵老师一道双曲线的参数方程题,麻烦您帮忙看下~设P为等轴双曲线x^2-y^2=1上的一点,F1和F2为两个焦点,证明:|F1P|·|F2P|=|OP|^2.下面是我的证明过程:设双曲线的参数方程为x=secθ,y=tanθ;已
一题高中双曲线题(急)设F1、F2是双曲线x^2-y^2=4的左右两个焦点,P是双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为M,求M点的轨迹方程.尽量完整些,至少要把思路讲清楚.