设f(x)在[0,pi/2]上连续,且单调增加,证明∫(0,pi/2)f(x)sinxdx≥2/pi∫(0,pi/2)f(x)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:12:46
设f(x)在[0,pi/2]上连续,且单调增加,证明∫(0,pi/2)f(x)sinxdx≥2/pi∫(0,pi/2)f(x)dx
设f(x)在[0,pi/2]上连续,且单调增加,证明∫(0,pi/2)f(x)sinxdx≥2/pi∫(0,pi/2)f(x)dx
设f(x)在[0,pi/2]上连续,且单调增加,证明∫(0,pi/2)f(x)sinxdx≥2/pi∫(0,pi/2)f(x)dx
证明:令2/pi∫(0,pi/2)f(x)dx=f(c),其中0=0,打开化简记得结论.
在[0,π/2]上,0≦sinx≦1,sinx连续且单调增加,所以必有唯一的一点ξ∈(0,π/2),使得sinξ=2/π①;在[0,ξ],sinx≦sinξ,即sinx≦2/π,即sinx-2/π≦0②;另外在[0,ξ],f(x)≦f(ξ)③;由②、③得f(x)(sinx-2/π)≧f(ξ)(sinx-2/π)④;在[ξ,π/2]上,显然有sinx-sinξ≧0,即sinx-2/π≧0,f(x)≧...
全部展开
在[0,π/2]上,0≦sinx≦1,sinx连续且单调增加,所以必有唯一的一点ξ∈(0,π/2),使得sinξ=2/π①;在[0,ξ],sinx≦sinξ,即sinx≦2/π,即sinx-2/π≦0②;另外在[0,ξ],f(x)≦f(ξ)③;由②、③得f(x)(sinx-2/π)≧f(ξ)(sinx-2/π)④;在[ξ,π/2]上,显然有sinx-sinξ≧0,即sinx-2/π≧0,f(x)≧f(ξ),所以f(x)(sinx-2/π)≧f(ξ)(sinx-2/π)⑤;由④、⑤可知,在[0,π/2]上,恒有f(x)(sinx-2/π)≧f(ξ)(sinx-2/π),所以∫(0→π/2)f(x)(sinx-2/π)dx≧∫(0→π/2)f(ξ)(sinx-2/π)dx⑥,在⑥式中,∫(0→π/2)f(ξ)(sinx-2/π)dx=f(ξ)∫(0→π/2)(sinx-2/π)dx=f(ξ)×0=0,所以由⑥得∫(0→π/2)f(x)(sinx-2/π)dx≧0,即∫(0→π/2)f(x)sinxdx≧(2/π)∫(0→π/2)f(x)dx(证毕)。
收起