Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:31:26
Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8
Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8
Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8
前n项和公式为:Sn=na1+n(n-1)d/2 (即二次函数形式)
故设:Sn= (2n--3) x kn ; Tn= (4n--3) x kn (k ≠0);
所以 Sn= 2kn^2 --3kn ;Tn=4kn^2 --3kn
所以:S6= 72k --18k= 64k ,S5= 50k--15k=45k ;则 a6=1/2(a3+a9)=S6--S5 =19k 即:a3+a9=38k
T6=144k--18k=126k,T5=100k--15k=85k;则b6 =1/2(b5+b7)=1/2(b4+b8)=T6--T5=41k
即:(b5+b7)=(b4+b8)=82k
所以:a9/(b5+b7)+a3/(b4+b8)= (a3+a9)/(b5+b7) =38k/82k= 19/41
Sn Tn n Sn/Tn=2n-3/4-3 a3/b5+b7+a3/b4+b8
等差数列{an},{bn},的前n项和分别为Sn,Tn且Sn/Tn=(7n+2)/(3n+4)则a10/b10=
已知Sn等于4^n,求Tn
已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn 小于4/3
{an}的和Sn,{Sn}的和Tn,且Tn=2Sn-n²,求数列an
已知等差数列an,bn的前N项和为Sn,Tn,且Sn/tn=2n+3/n+5,求a5/b6,令Sn=kn(2n+3),Tn=kn(n+5)
Sn=(n^2)/2+n/2,Tn=1/S1+1/S2+...+1/Sn,求Tn
等差数列{an}{bn},前n项和分别为Sn,Tn,Sn/Tn=n+4/4n+3,则a5/b5=?
等差数列{an},{bn},的前n项和分别为Sn,Tn且Sn/Tn=(3n-1)/(2n+3)则a8/b8=快.
若{an}{bn}等差,其前n项和分别为Sn Tn若Sn/Tn=2n+3/3n-1则a9/b9=
已知数列{an},{bn}的前n项和Sn、Tn,Sn=2n平方+3n,Tn=2-bn求通项公式an,bn
等差数列{an}.{bn}的前n项和分别为Sn.Tn.若Sn/Tn=(2n+2)/(n+3),则a7/b7=
等差数列{An}和{Bn}的前n项和分别为Sn和Tn,且Sn/Tn=(2n+1)/(3n+2),则:A6/B6=?
前n项和分别为Sn,Tn若Sn/Tn=2n+2/n+3 则a7/b7=?如题
等差数列an和bn的前n项和分别是Sn和Tn,且Sn/Tn=(3n-3)/(2n+3),求a10/b7同上
两个等差数列{an}和{bn}的前n项和分别是Sn和Tn,Sn/Tn=2n+3/3n-1,求a9/b9
两个等差数列{an}和{bn}的前n项和分别是sn和tn,若sn/tn=(2n+3)/(3n-1),求a9/b9
等差数列{an},{bn}的前n项和分别Sn,Tn,且Sn/Tn=(3n-1)/(2n+3),则a8/b8