在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点,求证:EF=二分之一(AB-CD)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:56:28
在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点,求证:EF=二分之一(AB-CD)
在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点,求证:EF=二分之一(AB-CD)
在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点,求证:EF=二分之一(AB-CD)
证明:过点F作FM∥AD,FN∥BC,交AB与点M、N
则四边形ADFM、BCFN是平行四边形
∴AM=DF,BN=FC
又∵F是DC的中点,∴FC=DF,∴AM=NB
又∵AE=BN,∴EM=EN
∵∠A+∠B=90°,∴∠FMN+∠FNM=90°
∴△FMN是直角三角形
∴EF=1/2MN,∴EF=二分之一(AB-CD)
过点F作FG∥DA交AB于G,再过点F作FH∥CB交AB于H。
容易证得:∠FGE=∠A,∠FHE=∠B,
且DFGA、FCBH都是平行四边形,得:AG=DF,HB=FC。
显然有:GH=AB-AG-HB=AB-DF-FC=AB-CD。
由∠FGE=∠A,∠FHE=∠B,∠A+∠B=90°,得:∠FGE+∠FHE=90°,
即:∠GFH=90°。<...
全部展开
过点F作FG∥DA交AB于G,再过点F作FH∥CB交AB于H。
容易证得:∠FGE=∠A,∠FHE=∠B,
且DFGA、FCBH都是平行四边形,得:AG=DF,HB=FC。
显然有:GH=AB-AG-HB=AB-DF-FC=AB-CD。
由∠FGE=∠A,∠FHE=∠B,∠A+∠B=90°,得:∠FGE+∠FHE=90°,
即:∠GFH=90°。
因为E、F分别是AB、CD的中点,所以:DF=FC,DE=EB,
结合AG=DF,HB=FC,得:DE-AG=EB-HB,即:EG=EH,所以:EF=GH/2,
于是:EF=(AB-CD)/2。
收起