高中必修1集合集合的运算
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:27:42
高中必修1集合集合的运算
高中必修1集合
集合的运算
高中必修1集合集合的运算
集合的概念
某些指定的对象集在一起就是集合.
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元.如(1)阿Q正传中出现的不同汉字(2)全体英文大写字母.任何集合是它自身的子集.一般的,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员).
元素与集合的关系:
元素与集合的关系有“属于”与“不属于”两种.
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}
例如,全集U={1,2,3,4,5} A={1,3,5} B={1,2,5} .那么因为A和B中都有1,5,所以A∩B={1,5} .再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有.那么说A∪B={1,2,3,5}.图中的阴影部分就是A∩B.
有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个.结果是3,5,7每项减1再相乘.48个.
无限集:定义:集合里含有无限个元素的集合叫做无限集
有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合.
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)
注:空集包含于任何集合,但不能说“空集属于任何集合”.
补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}
空集也被认为是有限集合.
例如,全集U={1,2,3,4,5} 而A={1,2,5} 那么全集有而A中没有的3,4就是CuA,是A的补集.CuA={3,4}.
在信息技术当中,常常把CuA写成~A.
某些指定的对象集在一起就成为一个集合,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ.空集是任何集合的子集,是任何非空集的真子集.任何集合是它本身的子集.子集,真子集都具有传递性.
『说明一下:如果集合 A 的所有元素同时都是集合 B 的元素,则 A 称作是 B 的子集,写作 A ⊆ B.若 A 是 B 的子集,且 A 不等于 B,则 A 称作是 B 的真子集,写作 A ⊂ B.
所有男人的集合是所有人的集合的真子集.』
集合元素的性质:
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合.这个性质主要用于判断一个集合是否能形成集合.
2.互异性:集合中任意两个元素都是不同的对象.如写成{1,1,2},等同于{1,2}.互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素.
3.无序性:{a,b,c}{c,b,a}是同一个集合.
4.纯粹性:所谓集合的纯粹性,用个例子来表示.集合A={x|x