1.cos(π/6 - a)=根号3 /3,求cos(5π/6+a)+sin^2(a-π/6)的值2.已知sinA,sinB是方程8x^2-6kx+2k+1=0的两个根,且A、B角的终边互相垂直,求实数k的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:32:32

1.cos(π/6 - a)=根号3 /3,求cos(5π/6+a)+sin^2(a-π/6)的值2.已知sinA,sinB是方程8x^2-6kx+2k+1=0的两个根,且A、B角的终边互相垂直,求实数k的值.
1.cos(π/6 - a)=根号3 /3,求cos(5π/6+a)+sin^2(a-π/6)的值
2.已知sinA,sinB是方程8x^2-6kx+2k+1=0的两个根,且A、B角的终边互相垂直,求实数k的值.

1.cos(π/6 - a)=根号3 /3,求cos(5π/6+a)+sin^2(a-π/6)的值2.已知sinA,sinB是方程8x^2-6kx+2k+1=0的两个根,且A、B角的终边互相垂直,求实数k的值.
.cos(π/6 - a)=根号3 /3,求cos(5π/6+a)+sin^2(a-π/6)的值
cos(5∏/6+a)=cos[∏-(∏/6-a)]=-cos(∏/6-a)=-根号3/3
由公式 ( sina)^2+(cosa)^2=1
sin^2(π/6-a)=1-cos^2(π/6-a)=1-(根号3/3)^2=1-1/3=2/3
故,原式=-根号3/3+2/3
2.已知sinA,sinB是方程8x^2-6kx+2k+1=0的两个根,且A、B角的终边互相垂直,求实数k的值.
设A=α,则B=90+α,sinA=sinα,sinB=sin(90+α)=cosα
由韦达定理可得:
sinα+cosα=3k/4
sinα*cosα=(2k+1)/8
又因为;(sinα)^2+(cosα)^2=1
则:(sinα+cosα)^2-2sinα*cosα=1
代入得:(3k/4)^2-2[(2k+1)/8]=1
解得:k=2或k=-10/9
代入判别式得:k=-10/9