设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:27:47
设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
x→0
因为f''(0)=4,故,f'(x)在x=0处连续
而
lim f(x)/x极限存在,故该极限必为0/0型,利用L'Hospital法则
=lim f'(x)
=f'(0)
=0
lim f(x)/x^2
该极限为0/0型,利用L'Hospital法则,
=lim f'(x)/2x
该极限为0/0型,利用L'Hospital法则,
=lim f''(x)/2
=f''(0)/2
=4/2
=2
有不懂欢迎追问
f(x)在(-∞,+∞)内有三阶导数,x→∞时,limf(x),limf'(x),limf(x)存在,且,limf'(x)=0求证x→∞时,limf’(x)=0,limf“(x)=0
设x→0,limf(x)/x=0,f''(0)=4,证明:x→0,limf(x)/x^2=2
设limf(x)=0请证明limf(x)sinx=0 x→x0 x→x0
设f'(x)=e^(-x^2),limf(x)=0,求∫(0,+∞)x^2*f(x)dx
设f(0)=0且极限存在x→0,lim f(x)/x,则 x→0,limf(x)/x=
设f(x)在(a,+∞)内可导,且limf(x)=A>0(当x-->+∞),证明limf(x)=+∞(当x-->+∞)
设f(x)=arctan√x,则x.>0,x趋向于0 ,limf(x+x.)-f(x.)/x=我打错了,limf(x+x。)-f(x。)是整体
设函数f(x-1)=x^2+2x-4,则limf(x)=?(x->0 )
设limf(x)=A,且A>0,证明lim根号f(x)=根号A
设f(x)=当x0时为arccot-2/(x^2),求lim f(x) x->0-,lim f(x)x->0+,limf(x) x->0
设f(x)在区间(-∞,+∞)内单调增加,limf(x)=1(x→0),证明f(x)在x=0处连续
设f(0)=0且极限x→0,imf(x)/x存在,则 x→0,limf(x)/x=
f(x)在[a,+无穷)内可导,且lim[f(x)+kf'(x)]=l(x→∞)(k>0).证明:limf(x)=l,limf'(x)=0.
设函数f(x,y)=xy/根号x^2+y^2,求limf(x,y)x,y趋于0
设f(0)=0,f'(0)=2,求limf(x)/sin 2x ,x 趋向于0
极限除法运算证明中的定义域问题设limf(x)=A,limg(x)=B(B≠0),(x→x0)求证limf(x)/g(x)=A/B证明:只要证明f(x)/g(x)-A/B是无穷小即可.由于limf(x)=A,limg(x)=B,可设f(x)=A+a,g(x)=B+b,其中a和b是x→x0时的无穷小f(x)/
当x→0时,lim[ln(1+2x)+xf(x)]/x^2=2,求lim[2+f(x)]/x为什么这样解是错的?lim[ln(1+2x)]/x^2+limf(x)/x=lim2x/x^2+limf(x)/x=lim[2+f(x)]/x=2不是有lim[f(x)+g(x)]=limf(x)+limg(x)吗?
当x→0时,lim[ln(1+2x)+xf(x)]/x^2=2,求lim[2+f(x)]/x 为什么这样解是错的?lim[ln(1+2x)]/x^2+limf(x)/x=lim2x/x^2+limf(x)/x=lim[2+f(x)]/x=2不是有lim[f(x)+g(x)]=limf(x)+limg(x)吗?