偏导数和导数的区别!最好能举几个例子

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:35:06

偏导数和导数的区别!最好能举几个例子
偏导数和导数的区别!
最好能举几个例子

偏导数和导数的区别!最好能举几个例子
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限(有过极限存在的话).
一元函数,一个y对应一个x,导数只有一个.
二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导.
求偏导时要注意,对一个变量求导,则视另一个变量为常数,只对改变量求导,从而将偏导的求解转化成了一元函数的求导了.

偏导数的定义
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f...

全部展开

偏导数的定义
设有二元函数z=f(x,y),点(x0,y0)是其定义域D内一点.把y固定在y0而让x在x0有增量△x,相应地函数z=f(x,y)有增量(称为对x的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果△z与△x之比当△x→0时的极限存在,那么此极限值称为函数z=f(x,y)在(x0,y0)处对x的偏导数(partial derivative)。记作f'x(x0,y0)。
函数z=f(x,y)在(x0,y0)处对x的偏导数,实际上就是把y固定在y0看成常数后,一元函数z=f(x,y0)在x0处的导数
同样,把x固定在x0,让y有增量△y,如果极限存在
那么此极限称为函数z=(x,y)在(x0,y0)处对y的偏导数.记作f'y(x0,y0)
一元函数y=f(x)中求导称导数(只有一个自变量x,当然是对x求导)
多元函数对某自变量求导,称偏导数
例如:二元函数f(x,y),有对x的偏导f′x,
也有对y的偏导f′y

收起