如图,在线段ab上取一点c,分别以ac,cb为边向上作等边三角形adc与等边三角形ceb,连接mn,oc,1,求证mn平行ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:50:33

如图,在线段ab上取一点c,分别以ac,cb为边向上作等边三角形adc与等边三角形ceb,连接mn,oc,1,求证mn平行ab
如图,在线段ab上取一点c,分别以ac,cb为边向上作等边三角形adc与等边三角形ceb,连接mn,oc,
1,求证mn平行ab

如图,在线段ab上取一点c,分别以ac,cb为边向上作等边三角形adc与等边三角形ceb,连接mn,oc,1,求证mn平行ab
∵正△ADC与正△ECB
∴①CA=CD,CE=CB②∠ACD=∠DCE=∠ECB=60°
∴∠ACE=∠DCB=120°
∴⊿ACE≌⊿DCB ∴∠MEC=∠NDC
又∵∠DCE=∠ECB=60°即∠MCE=∠NCB且CE=CB
∴⊿MCE≌⊿NCB ∴CM=CN 又∠DCE=60°
∴⊿MCN等边三角形 ∴∠MNC=60°=∠NCB
∴MN∥AB

你给的估计没人知道答案,mn不知道在哪呢

如图,在线段ab上取一点c,分别以ac,cb为边向上作等边三角形adc与等边三角形ceb,连接mn,oc,1,求证mn平行ab 已知如图C是线段AB上一点,分别以AC,BC为边长在AB同侧作正三角形ACD,正三角形BCE,求证正三角形MCN. 如图 点c是线段ab上的任意一点,分别以ac,bc为边在直线ab的同侧作等边三角形acd和等边三角形bce,.如图 点c是线段ab上的任意一点,分别以ac,bc为边在直线ab的同侧作等边三角形acd和等边三角形bce,a 已知:如图,C是线段AB上一点,分别以AC,BC为边在B同侧作等边三角形ACD和等边三角形BCE,AE与DC相交于点G…… 已知:如图,C是线段AB上一点,分别以AC,BC为边在B同侧作等边三角形ACD和等边三角形BCE, 如图,P是线段AB上一点,C,D两点分别从如图,P是线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)①若C、D在运动时,总有PD=2AC,求AP:BP的值② 已知点c为线段ab上一点分别以ac bc为边在线段AB同侧作角ACD和角BCE,且CA=CD,CB=CE已知点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F如图 如图,C为线段AB上一点,分别以AC、CB为边在AB同侧做等边三角形△ACD和等边△BCE,AE交DC于G点,DB交CE于H 如图,C为线段AB上一点,分别以AC、CB为边在AB同侧做等边三角形△ACD和等边△BCE,猜测BD AE 有什么关系? 如图,C为线段AB上的任意一点,分别以AC、BC为边在AB同侧做等边△ACD和等边△BCE,连接AE、BD,交点为O求证:OC平分角AOB 如图①,已知C是线段AB上一点,分别以AC,BC为边长在AB的同侧作等边△ADC与等边△CBE.问:连接CK,证KC平分∠AKB 如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作情 如图,C为线段BE上一点,点A、D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证AC=CD. 已知如图,点C是线段AB上的任意一点,分别以AC,BC作等边△ACD和等边△BCE,连接CD,AE交于M,BD,CE交于N若AB为10cm,当c在线段AB上移动时,是否存在这样一点C,使MN最长,并求出MN的长, 如图,在线段AB上取一点C,分别以AC、CB为边上作等边△ADC与等边△CEB,连接DB、AE,DB与AE交于点O,AE交CD于M点,BD交CE于N点,连接MN、OC,求证:(1)MN平行AB;(2)OC平分∠AOB 如图,C是线段AB上一点,分别以AC,BC为边在线段AB同侧作正方形ACDE和正方形BCFG连接AF、BD.①AF与BD是否相等?②如果点c在线段AB的延长线上,那么①中的结论是否成立?请画图,并说明理由.只回答第二 如图,C是线段AB上一点,分别以AC,BC为边在线段AB同侧作正方形ACDE和BCFG,连接AF,BD(1)AF与BD是否相等?为什么?(2)如果点C在线段AB的延长线上,那么(1)中的结论是否成立?请画图,并说明理由 如图,线段AB的长度是12cm,P是线段AB上一点,C、D两点分别从P、B出发,以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)、若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段A 如图,点C是线段AB上任意一点,分别以AC、BC为边在同侧做等边△ACD和等边△BCE,连接BD、AE并求相交形成的角度数