求 :定积分∫(1 ,0)e^-x^2 dx ..

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:11:03

求 :定积分∫(1 ,0)e^-x^2 dx ..
求 :定积分∫(1 ,0)e^-x^2 dx ..

求 :定积分∫(1 ,0)e^-x^2 dx ..
e^(-x^2)的不定积分不能用初等函数来表示
有两种方法,一是对∫(0→1)e^(-x^2)dx这个定积分用数值积分的方法,如辛卜生法等,二是将e^(-x^2)级数展开,逐项积分,再求定积分的值
∫e^(-x^2)dx=Σ(n:0→∞)(-1)^n*x^(2n+1)/[(2n+1)n!]+C
∫(0→1)e^(-x^2)dx=Σ(n:0→∞)(-1)^n*1/[(2n+1)n!]≈0.746824133