解方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:05:07
解方程
解方程
解方程
(x+1)/(x-2) =(x-2+3)/(x-2) = 1 + 3/(x-2)
同理,(x+3)/(x-1)=1 + 4/(x-1)
(x-3)/(x-4)=1 + 1/(x-4)
(x-1)/(x-3)=1 + 2/(x-3)
原式可以化为:3/(x-2) - 4/(x-1) = 1/(x-4) - 2/(x-3)
(两边分别通分)
[3(x-1)-4(x-2)]/[(x-2)(x-1)] = [(x-3)-2(x-4)]/[(x-4)(x-3)]
(5-x)/[(x-2)(x-1)] = (5-x)/[(x-4)(x-3)]
得(x-2)(x-1) = (x-4)(x-3)
x=5/2
直接通分很累的,这方法主要是先分离常数减少通分计算量
两边同时通分就可以了
等号两边各自统分得:
(5-X)/(X-1)(X-2)=(5-X)/(X-3)(X-4)
即:(X-1)(X-2)=(X-3)(X-4)
两边去括号得:4X=10
X=2.5
(x+1)/(x-2)-(x+3)/(x-1)=(x-3)/(x-4)-(x-1)/x-3)
由方程可得:x-2≠0 ,x-1≠0,x-4≠0 ,x-3≠0
所以x≠1、2、3、4
等式两边都同时乘以(X-1)*(X-2)*(X-3)*(X-4)
得:)
(X-1)*(X-3)*(X-4)(x+1)-(x+3)*(X-2)*(X-3)*(X-4
等式两边同时乘以(X-2)(X-1)(X-3)(X-4)