已知直线l:2mx-y-8m-3=0和圆C:x2=y2-6x=12y+20=0(1)试证:不论m为何实数,直线l于圆C总相交(2)m为何值时,l被圆C截得的弦长最小?并求出这个最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:27:51

已知直线l:2mx-y-8m-3=0和圆C:x2=y2-6x=12y+20=0(1)试证:不论m为何实数,直线l于圆C总相交(2)m为何值时,l被圆C截得的弦长最小?并求出这个最小值
已知直线l:2mx-y-8m-3=0和圆C:x2=y2-6x=12y+20=0
(1)试证:不论m为何实数,直线l于圆C总相交
(2)m为何值时,l被圆C截得的弦长最小?并求出这个最小值

已知直线l:2mx-y-8m-3=0和圆C:x2=y2-6x=12y+20=0(1)试证:不论m为何实数,直线l于圆C总相交(2)m为何值时,l被圆C截得的弦长最小?并求出这个最小值
(1)
2mx-y-8m-3=0
2m(x-4)-y-3=0
由题目易知,直线l过一定点P(4,-3)
将定点P(4,-3)代入圆方程左式:x^2+y^2-6x+12y+20中,得
4^2+(-3)^2-6*4+12*(-3)+20 = -15 < 0
说明定点P(4,-3)在圆C内部.
所以,不论m为何实数,直线l与圆总相交.
证毕.
2.将圆方程化为标准形式得:
(x-3)^2 + (y+6)^2 = 5^2
易知,圆心为O(3,-6),半径为r=5
要使截得的弦长最短,根据数形结合,易知,当点P(4,-3)为相交弦中点时所截得弦长最短.
因弦心距|OP| = √[(3-4)^2+(-6+3)^2] = √10
所以所截得最短弦长为 d = 2√(25-10) = 2√15
而此时弦所在的直线斜率为
k = -1/k' = -1/3
即 2m = -1/3
所以m = -1/6
综上,知,m = -1/6时,l被圆C截得弦最小,最小值为2√15

已知直线l;2mx-y-8m-3=0和圆C;(x-3)平方+(y+6)平方=25求直线l被圆C截得的线段最短时的直线l的方程 已知直线l:2mx-y-8m-3=0,和圆L:x2+y2-6x+12y+20=0,证不论m为何值实数l总与圆L相交 已知直线L:2MX-Y-8M-3=0和圆C:x^2+y^2-6x-12y+20=0 判断直线L与圆C的位置关系,为什么是 相交?请证! 已知直线l:2mx-y-8m-3=0,和圆L:x2+y2-6x+12y+20=0,证:不论m取何值,l总经过一个定点 已知直线l的方程是mx+4y+2m-8=0,圆C的方程是x²+y²-4x+6y-29=0.(1)证明l过定点 (2)证明l和圆相交 (3)求直线l被圆截得的弦长最短时的l的方程 证明不论m取什么实数,直线l与圆c总相交已知直线l:2mx-y-8m-3=0和圆C:(x-3)^2+(y+6)^2=25 证明不论m取什么实数,直线l与圆C总相交 求直线l被圆C截得的线段最短时直线l的方程==== 一道直线与圆的方程应用问题已知m∈R,直线l:mx-(m^2+1)y-4m=0,和圆C:x^2+y^2-8x+4y+16=0,直线l能否将圆C分割成弧长的比值为1/3的两段圆弧?为什么? 已知直线l:2mx-y-8m-3=0和圆C:x2=y2-6x=12y+20=0(1)试证:不论m为何实数,直线l于圆C总相交(2)m为何值时,l被圆C截得的弦长最小?并求出这个最小值 一:已知m∈R,直线L:mx-(m^2+1)y=4m和圆C:x^2=y^2-8x+4y+16=0 (1)求直线L斜率的取值范围 (2)直线L能否将圆C分割成弧长的比值为1/2的两段圆弧?为什么? 已知m属于R,直线l::mx-(m^2+1)y=4m和圆c:x^2+Y^2-8x+4y+16=0,求直线l斜率的取值范围拜托各位了 3Q 数学一个疑惑已知m属于R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0求直线l斜率的取值范围解直线l的方程可化为y=m/(m2+1)x-4m/(m2+1),则直线l的斜率k=m/(m2+1).因为|m|≤1/2(m2+1),所以|k|=|m| 数学题——已知两点A(3,2)和(负1,4)到直线L:mx+y+3=0的距离相等,求实数m的值 已知m∈R,直线l:mx-(m^2+1)y=4m,求直线l的斜率范围 已知m∈R,直线L:mx-(m²+1)y=4m和圆C:x²+y²-8x+4y+16=0相切,求M的值 已知两直线l=mx+y-2=0和l (m+2)x-3y+4=0与两坐标轴围成的四边形有外接圆.则实数m的值为 高二数学直线和圆的位置关系已知直线L:mx-y+1-m=0和圆C:x²+(y-1)²=5,试判断直线L和圆C的位置关系 求思路 已知C:x^2+y^2-2y-4=0,l:mx-y+1-m=0,(1)判断直线l和圆C位置关系(2)若直线l与圆C交于不同两点AB,且|AB|=3根号2,求直线的方程. 已知直线l的方程为:mx-y+2+m=0,圆O:x^2+y^2=8,直线l与圆O相交于A,B两点(1)不论实数m为何值,直线l恒过一定点,求出该定点(2)是否存在实数m,使得直线l将圆o截得的两段弧长比为1:3,若存在,写出直线l