递增数列{an}满足a1=6,an+an-1=9/an-an-1+8(n>=2)则a70=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:32:25

递增数列{an}满足a1=6,an+an-1=9/an-an-1+8(n>=2)则a70=
递增数列{an}满足a1=6,an+an-1=9/an-an-1+8(n>=2)则a70=

递增数列{an}满足a1=6,an+an-1=9/an-an-1+8(n>=2)则a70=
∵递增数列{an}满足a1=6,且an+an-1=9 /(an-an-1) +8(n≥2),
∴an^2-an-12=8an-8an-1+9,
即 an^2-8an+16=an-12-8an-1+16+9,即 (an-4)^2=(an-1-4)^2+9,故数列{(an-4)^2}构成以9为公差的等差数列,且首项为 4.
∴(an-4)^2=4+(n-1)9=9n-5.
∴(a70-4)&2=625=25^2,
∴a70-4=25,
∴a70=29,

﹙a70﹚²-36=8a70-8×6+9×69
解得a70=29 或a70=﹣21 ∵a70≥6 ∴a70=29

路过

∵递增数列{an}满足a1=6,且an+an-1=9 /(an-an-1) +8(n≥2),
∴an^2-an-12=8an-8an-1+9,
即 an^2-8an+16=an-12-8an-1+16+9,即 (an-4)^2=(an-1-4)^2+9,故数列{(an-4)^2}构成以9为公差的等差数列,且首项为 4.
∴(an-4)^2=4+(n-1)9=9n-5.

全部展开

∵递增数列{an}满足a1=6,且an+an-1=9 /(an-an-1) +8(n≥2),
∴an^2-an-12=8an-8an-1+9,
即 an^2-8an+16=an-12-8an-1+16+9,即 (an-4)^2=(an-1-4)^2+9,故数列{(an-4)^2}构成以9为公差的等差数列,且首项为 4.
∴(an-4)^2=4+(n-1)9=9n-5.
∴(a70-4)&2=625=25^2,
∴a70-4=25,
∴a70=29,

收起