已知f(x2-5)=logax2/(10-x2)(a>0,且a≠1) 1求f(x)的解析式,并写出定义域;

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:30:05

已知f(x2-5)=logax2/(10-x2)(a>0,且a≠1) 1求f(x)的解析式,并写出定义域;
已知f(x2-5)=logax2/(10-x2)(a>0,且a≠1) 1求f(x)的解析式,并写出定义域;

已知f(x2-5)=logax2/(10-x2)(a>0,且a≠1) 1求f(x)的解析式,并写出定义域;
f(x²-5)=logax²/(10-x²)
f(x²-5)=loga(x²-5+5)/(5+5-x²)
设t=x²-5,f(t)=loga(t+5)/(5-t)
所以解析式f(x)=loga(x+5)/(5-x)
函数必须满足x+5>0且5-x≠0
所以定义域为 (-5,5)∪(5,﹢∞)

设x^2-5=A,x^2=A+5
代入f(x2-5)=logax2/(10-x2),
f(A)=loga(A+5)/(5-A) f(x)=loga(X+5)/(5-X)

令u=x2-5,则x2=u+5,f(u)=loga(u+5)/(5-u),则-5