函数f(x)=xcosx^2在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:42:59

函数f(x)=xcosx^2在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7
函数f(x)=xcosx^2在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7

函数f(x)=xcosx^2在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7
xcosx^2=0
x=0或cosx^2=0
cosx^2=0即x^2=π/2+kπ(k∈Z)
x∈[0,4]即x^2∈[0,16]
故k=0,1,2,3,4时成立
故共有6个零点

函数f(x)=xcosx^2在区间[0,4]上的零点个数为? 函数f(x)=xcosx^2在区间[0,4]上的零点个数为 函数f(x)=xcosx在区间【0,8】上的零点个数为 函数f(x)=xcosx^2在区间[0,4]上的零点个数为 A.4 B.5 C.6 D.7 函数f(x0=xcosx的导函数f'(x)在区间[-π,π]上的图像 函数f(x)=xcosx-sinx在【0,2π】上的最大值是?最小值是? 函数f(x)=xcosx 的导函数在区间[-π, π] 上的图像大致是。 函数f(x)=xcosx 的导函数 在区间[-π,π] 上的图像大致是如何的 函数f(x)=xcosx-sinx在(0,2π)上的最大值和最小值分别是? 验证下列函数在指定区间上是否满足罗尔定理的条件f(x)=|xcosx|,[-π,π]f(x)=x((e^x)-1),[0,1] 求解一道高一数学题某学生对函数F(X)=2Xcosx的性质进行了研究,得出如下结论:1、函数f(x)的图像关于原点对称 2、点(π/2,0)是函数的一个对称中心 3.函数y=f(x)在闭区间(-π,0)上单调递 函数f(x)=xcosx 的导函数 在区间[-π,π] 上的图像大致是如何的选A 但原因是什么 已知函数f(x)=sin^3xcosx+cos^3xsinx+√3sin^2x求函数的单调减区间求y=(x)(0≤x≤ π)的值域 一、已知函数f(x)=sinx-xcosx+1/2(1)求证:函数f(x)在【-π,π】上单调递增(2)不等式f(x)<1/2*x^2+a在区间(0,+∞)上恒成立,求实数a的取值范围二、设函数f(x)=px-p/x-2lnx(1)若p=1,函数y=f(x)是否有极值?若有则 x属于 【0,2π】,则函数y=sinx-xcosx的单调递增区间是?需要 当函数f(x)在区 间[ π/2 ,0]上时,f(x)=sinx+xcosx≤0为什么? 函数f(x)=sinx-xcosx.(1)当x>0时,求函数的单调区间《2)当x属于[0,2013派]时,求所有极值的和 函数y=e^xcosx在(0,π)的单调增区间是多少