圆锥曲线复习 (16 17:17:43)A,B是抛物线y^2=4x上的两点,且OA⊥OB,(1)求A,B两点的横坐标之积和纵坐标之积(2)求证:直线AB过顶点(3)求弦AB中点P的轨迹方程.(4)求△AOB面积的最小值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:55:39

圆锥曲线复习 (16 17:17:43)A,B是抛物线y^2=4x上的两点,且OA⊥OB,(1)求A,B两点的横坐标之积和纵坐标之积(2)求证:直线AB过顶点(3)求弦AB中点P的轨迹方程.(4)求△AOB面积的最小值.
圆锥曲线复习 (16 17:17:43)
A,B是抛物线y^2=4x上的两点,且OA⊥OB,
(1)求A,B两点的横坐标之积和纵坐标之积
(2)求证:直线AB过顶点
(3)求弦AB中点P的轨迹方程.
(4)求△AOB面积的最小值.

圆锥曲线复习 (16 17:17:43)A,B是抛物线y^2=4x上的两点,且OA⊥OB,(1)求A,B两点的横坐标之积和纵坐标之积(2)求证:直线AB过顶点(3)求弦AB中点P的轨迹方程.(4)求△AOB面积的最小值.
设A(x1,y1),B(x2,y2),中点P(x0,y0)
(1)kOA=y1/x1,kOB=y2/x2
∵ OA⊥OB
∴ kOAkOB=-1
∴ x1x2+y1y2=0
∵ y1^2=4x1,y2^2=4x2
∴ y1^2/4* y2^2/4+y1y2=0
∵ y1≠0,y2≠0
∴ y1y2=-16
∴ x1x2=16
(2)∵ y1^2=4x1,y2^2=4x2
∴ (y1-y2)(y1+y2)=4(x1-x2)
∴ (y1-y2)/(x1-x2)=4/(y1+y2)
∴kAB=4/(y1+y2)
∴ 直线AB y-y1=4/(y1+y2)(x-x1)
∴ y=4x/(y1+y2)+y1-4x1/(y1+y2)
∴ y=4x/(y1+y2)+(y1^2-4x1+y1y2)/(y1+y2)
∵ y1^2=4x1,y1y2=-16
∴ y=4x/(y1+y2)-16/(y1+y2)
∴ y=4(x-4)/(y1+y2)
∴ AB过定点(4,0)
(3)设OA∶y=kx,代入y^2=4x
得:x=0,x=4/k^2
∴ A(4/k^2,4/k)
同理,以-1/k代k得B(4k^2,-4k)
∴ x0=2(k^2+1/k^2),y0=2(1/k-k)
∵k^2+1/k^2=(1/k-k)^2+2
∴x0/2=(y0/2)^2+2
即y0^2=2x0-8
∴ 中点P轨迹方程为y^2=2x-8
(4)直线AB过定点P(4,0)
S△AOB=S△AOP+S△BOP=1/2*OP*(|y1|+|y2|)=2(|y1|+|y2|)≥4根号(|y1y2|)=16
当且仅当|y1|=|y2|=4时,等号成立

静下心来,设,联立 韦达定理 高考考得都是没什么技巧的,靠算!!!