L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)下面是某网友的解答:xy^2=Q(x)-x^2ydx=P(x)利用格林公式∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:03:10
L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)下面是某网友的解答:xy^2=Q(x)-x^2ydx=P(x)利用格林公式∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dx
L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)
下面是某网友的解答:
xy^2=Q(x)
-x^2ydx=P(x)
利用格林公式
∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dxdy=R^2*πR^2/2
=πR^4/2 因为取得正向圆周,所以二重积dxdy=圆面积的一半.
我的问题是:为什么面积取一半?
L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)下面是某网友的解答:xy^2=Q(x)-x^2ydx=P(x)利用格林公式∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dx
因为取格林公式后,由线积分变成面积分,二重积分(x^2+y^2)dxdy,(x^2+y^2)不能用圆周方程
x^2+y^2=R^2替换,因为不在线上一重积分了,改为在圆面上二重积分了,应该用极坐标计算,r^2.rdr积分再乘以2pi.
我错了,原谅我吧
设L为取正向圆周的X^2+Y^2=1,求∫(-y)dx+xdy
L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)
设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值最后想x y 的范围怎样确定
设L为正向圆周:(x-a)^2+(y-a)^2=R^2,函数f(x)连续且恒f(x)>0,证明:∫(L)xf(y)dy-y/f(x)dx>=2πR^2
设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值
设L取圆周X^2+2Y^2=a^2的正向,则∮xdy-ydx=_______ 用格林公式
L为取正向的圆周,x^2+y^2=R^2,求曲线积分∮xy^2dy-x^2ydx的值(答案是πR^4/2)下面是某网友的解答:xy^2=Q(x)-x^2ydx=P(x)利用格林公式∮xy^2dy-x^2ydx=二重积分(dQ/dx-dp/dy)dxdy=二重积分(x^2+y^2)dxdy=R^2二重积dx
求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,
计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,
设L为圆周x^2+y^2=a^2,取正向,由格林公式知∮L2x^2ydx+x(x^2+y^2)dy=求详细过程
若f(x,y)具有连续的二阶偏导数 L为圆周x^2+y^2=1正向 则∫[3y+f(x,y)对x偏导数]dx+f(x,y)对y偏导数dy
设L是单连通区域D的边界,取负向,D的面积为A,则∮L 5ydx+3xdy=2.设L为x^2+y^2=2x,取正向,则∮L e^(y^2)dx+xdy= 设г是圆周 x^2+y^2+z^2=a^2,x+y+z=0, 则曲线积分∮г(x^2+y^2+z^2)ds=
高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz
【急求】一道高数曲线积分题设L为取正向的圆周x^2+y^2=64,则曲线积分∮[(2xy+2y)dx+(x^2-4y)dy]/(x^2+y^2)的值为多少.
对坐标的曲线积分问题计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向
设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)dy 之值为多少?求详解
计算I=∮1/x*arctan(y/x)dx+2/y*arctan(x/y)dy,L为圆周x^2+y^2=1,x^2+y^2=4与直线y=x,y=√3*x在第一象限所围城的区域的正向边界
求∮L au/an ds,其中u(x.y)=x^2+y^2,L为圆周x^2+y^2=6x取逆时针方向,au/an是u沿L的外法线方向导数.