英语翻译To scatter all MFP ranges from nano- to micro-length scales,all-scale hierarchical architectures are needed.This means that solid solution point defects,nanostructures and grain boundary interfaces must all be integrated in a single sampl
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:33:19
英语翻译To scatter all MFP ranges from nano- to micro-length scales,all-scale hierarchical architectures are needed.This means that solid solution point defects,nanostructures and grain boundary interfaces must all be integrated in a single sampl
英语翻译
To scatter all MFP ranges from nano- to micro-length scales,all-scale hierarchical architectures are needed.This means that solid solution point defects,nanostructures and grain boundary interfaces must all be integrated in a single sample,as shown in Fig.4(a).All-scale hierarchical architectures have the potential to significantly reduce the thermal conductivity down to the minimum theoretical limit.17 Recently,the contributions to phonon scattering of atomic-,nano- and meso-scales,structures sorted by the MFP range have been calculated in Si6,61,62 and PbTe,63 as shown in Fig.4(b).This study clearly showed that in Si \x0225% of the lattice thermal conductivity value is contributed by phonon modes with a MFP of less than 5 nm,which can be primarily attributed to scattering by a combination of atomicscale
solid-solution point defects.Approximately 55% of the thermal conductivity is contributed by phonon modes withMFPs between 5 and 100 nm,which can be scattered by nano-scale precipitates.57 Finally,the remaining \x0220% of the lattice thermal conductivity is contributed by phonon modes withMFPs
of 0.1–1.0 mm.The mesoscale grain structure is comparable in size to these longMFPs and thus can scatter a notable fraction of these additional phonons.57 Therefore,all length-scale (panoscopic)
structures in one bulk material can strongly scatter a broader spectrum of heat-carrying phonons which should be the main design principle for the future thermoelectric materials.
英语翻译To scatter all MFP ranges from nano- to micro-length scales,all-scale hierarchical architectures are needed.This means that solid solution point defects,nanostructures and grain boundary interfaces must all be integrated in a single sampl
人工翻译,请审阅
要驱散从纳米到微米长度的所有MFP范围,全方位的分层体系结构是需要的.这意味着固态溶液的点缺陷、纳米结构和晶粒界面必须都融合在一个单一的样品中,就如图4(a)所示.全方位分层体系结构有可能显著降低热导率,直至最小理论极限.17最近,按MFP的范围排序的,原子规模、纳米规模和介观规模结构的声子分散的贡献,已经在Si6,61,62和PbTe63中进行的计算,如图4(b)所示.这项研究清楚地表明,在Si中,25%的晶格热导率值是由MFP小于5nm的声子模式贡献的,这可主要归因于由原子规模的固态溶液点缺陷相结合的驱散作用.大约55%的热导率是由MFP在5和100nm之间的声子模式贡献的,它们可以被纳米规模的沉淀物所驱散.最后,其余20%的晶格热导率是由MFP为0.1.0mm的声子模式所贡献的.介观规模的晶粒结构在大小上与这些长MFPs相当,有此可以驱散相当部分的这些额外的声子.57因此,在一块块状材料中的所有长度规模(panoscopic,此单词查不到-译注)的结构,可以强烈地驱散很宽波谱的载热声子,这应该是未来热电材料主要的设计原理.
亲,显示不完整啊
太多了, 人工翻译很费劲!机器的要不要。