如图,在四边形ABCD中,∠B=∠C=90°,AE,CF分别是;∠BAD和∠DCB的外角平分线.试说明AE∥CF成立的理由(提示:∠GAD=∠BCD)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:35:06
如图,在四边形ABCD中,∠B=∠C=90°,AE,CF分别是;∠BAD和∠DCB的外角平分线.试说明AE∥CF成立的理由(提示:∠GAD=∠BCD)
如图,在四边形ABCD中,∠B=∠C=90°,AE,CF分别是;∠BAD和∠DCB的外角平分线.试说明AE∥CF成立的理由
(提示:∠GAD=∠BCD)
如图,在四边形ABCD中,∠B=∠C=90°,AE,CF分别是;∠BAD和∠DCB的外角平分线.试说明AE∥CF成立的理由(提示:∠GAD=∠BCD)
明白提示的意思 G应该是BA延长线上的点吧
看我解
∠GAD是 ∠BAD 的外角 做其角平分线AE交CD 于 E
同样做∠DCB外角的角平分线 CE
则∠DCE是∠BCD的一半(因为∠C=90°)
在图中∠CDA=∠GAD=2∠EAD (∠B=∠C=90° 说明 BA//CD )
又 ∠CDA=∠EAD+∠AED
所以 ∠EAD=∠AED
如果 AE∥CF
则有 ∠EAD=∠DCE(内错角相等)
即 ∠AED=∠DCE
∠GAD=∠BCD
图片呢?我看不到图,不过我几何还不错。
延长CD交AE于E,则△ADE为RT△,∠DEA=90°-∠DAE
由于AE平分∠DAG,所以∠DAE=1/2∠DAG,∠DEA=90°-∠DAE=90°-1/2∠DAG
因为,∠B=∠D=90°,所以A,B,C,D四点共圆,∠BCD=∠DAG
因为CF平分∠BCH,所以∠HCF=1/2∠BCH
而∠HCF=1/2(180°-∠BCD)=90-1/2∠BCD
全部展开
延长CD交AE于E,则△ADE为RT△,∠DEA=90°-∠DAE
由于AE平分∠DAG,所以∠DAE=1/2∠DAG,∠DEA=90°-∠DAE=90°-1/2∠DAG
因为,∠B=∠D=90°,所以A,B,C,D四点共圆,∠BCD=∠DAG
因为CF平分∠BCH,所以∠HCF=1/2∠BCH
而∠HCF=1/2(180°-∠BCD)=90-1/2∠BCD
则∠HCF=∠DEA((同位角)
所以,AE∥CF
收起