1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)=1/2X+4012

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:57:29

1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)=1/2X+4012
1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)=1/2X+4012

1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)=1/2X+4012
1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)=1/2X+4012
1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+...+1/(x+2005)-1/(x+2006)=1/2(x+2006)
1/(x+1)-1/(x+2006)=(1/2)*1/(x+2006)
1/(x+1)=(3/2)*1/(x+2006)
3(x+1)=2(x+2006)
x=4012-3
x=4009

1/(X+1)(X+2)+1/(X+2))(X+3)+...+1/(X+2005)(X+2006)
=1/(X+1)-1/(X+2)+1/(X+2)-1/(X+3)+1/(X+3)-...+1/(2005+X)-1/(2005+X)+1/(2006+X)
=1/(x+1)-1/(X+2006)

比如:1/(X+1)(X+2)=1/(X+1)-1/(X+2)
1/(X+2))(X+3)=1/(X+2)-1/(X+3)........
以此类推....
1/(X+2005)(X+2006)=1/(X+2005)-1/(X+2006)
最后化简到 1/(X+1)-1/(X+2006)=1/2X+4012
剩下的你应该会做了吧。