tan(-11π/6)、sin(-16π/3)、cos120°、cos(-180°-β)的求解过程.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:22:23
tan(-11π/6)、sin(-16π/3)、cos120°、cos(-180°-β)的求解过程.
tan(-11π/6)、sin(-16π/3)、cos120°、cos(-180°-β)的求解过程.
tan(-11π/6)、sin(-16π/3)、cos120°、cos(-180°-β)的求解过程.
tan(-11π/6)= tan(π/6)=√3/3 ,因为tan函数的周期为π
sin(-16π/3)=sin(2/3π)=√3/2 ,sin函数的周期为2π
cos120°=1/2 ,cos(-180°-β)= cos(360°-180°-β)= cos (π-β)= -cos(-β) = -cosβ
tan(-11π/6)= tan(-2π+π/6)=tan(π/6)=√3/3
sin(-16π/3)=sin(-6π+2/3π)=sin(2/3π)=√3/2
cos120°=cos(180-60)=-cos(60)=-1/2 , cos(-180°-β)= cos(360°-180°-β)= cos (π-β)= -cosβ
-11π/6在第一象限
sin(π+a)+tan π/4
tan(-11π/6)、sin(-16π/3)、cos120°、cos(-180°-β)的求解过程.
已知α∈(0,π|2),2tanα+3sinβ=7,且tanα-6sinβ=1,求sinα的值
若α∈(0,π/6) 比较tan(sinα),tan(cosα),tan(tanα)的大小
1.求下列三角函数值:(1)tan(-11π/6);(2)cos(-π/6);(3)sin(-π/3);(4)cos(-420°);(5)tan(-750°);(6)sin(-73π/6).2.化简:(1)cos(a+2π)sin(-a)/tan(-2π-a)-sin(-a-2π)cos(-a)/tan(-a);(2)tan(-
1.求三角函数值:⑴sin(—(43π)/6)⑵cos(—(83π)/6) ⑶tan(—(41π)/3) ⑷cos((11π)/4) ⑸sin930° 2.化简: ⑴【Cos(x—π) tan(x—2π) tan(2π—x)】/【sin(π+x)】 ⑵((sin^2 )(—x))—tan(360°—x) *tan(—x)—sin(18
1.求三角函数值:⑴sin(—(43π)/6) ⑵cos(—(83π)/6)⑶tan(—(41π)/3)⑷cos((11π)/4)⑸sin930°2.化简:⑴【Cos(x—π) tan(x—2π) tan(2π—x)】/【sin(π+x)】⑵((sin^2 )(—x))—tan(360°—x) *tan(—x)—sin(180°
高一三角函数计算求 具体方法!(1)cos310*tan(-108)(2)sin(5π/4)*cos(4π/5)*tan(11π/6)
sin(-19π/6)=?已知[3Sin(π+a)+Cos(π-a)]/4Sin(-a)-Sin(5π/2+a)=2,求tan a
sin(x+π/3)+(tanπ/6)cos(x+π/3) 化简 sin(x+π/3)+(tanπ/6)cos(x+π/3) 化简
sin(-19π/6)=;sin(-16π/3)=;cos(-79π/6)=;tan(-26π/3)=;sin(15π/4)=;cos(-60°)-sin(-210°)=?
tan(2π/13)+4sin(6π/13)
Sinπ/3Tanπ/3+tanπ/6COSπ/6-Tanπ/4COSπ/2
若a属于(0,π/2)试比较tanα、tan(tanα)、tan(sinα)
sin(2a+π/4)化简成tan
化简sin(2π-α)tan(α+π)tan(-α-π)/
已知tanα-tanβ=2tanα^2tanβ,且αβ均不等于kπ/2.试求sinβsin(2α+β)/sinβ或者能给思路已知就是这个:tanα-tanβ=2tanαtanαtanβ
cos11π/4+tan(-7π/6)+sin(-π)+cos(-5π/6)