在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+...在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+q=0若f(x)=Pn(x)*e^(λx),则特解为y*=x^k*Qn(x)*e^(λx)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:53:50

在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+...在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+q=0若f(x)=Pn(x)*e^(λx),则特解为y*=x^k*Qn(x)*e^(λx)
在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+...
在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+q=0
若f(x)=Pn(x)*e^(λx),则特解为y*=x^k*Qn(x)*e^(λx)
若f(x)=(A*cosβx+B*sinβx)*e(αx),则特解为y*=x^k*(a1*cosβx+a2*sinβx)*e^(αx)
其中k是特征根λ的重数
现在我的问题是这个重数到底改怎么确定.
我的理解是f(x)中的λ若不是特征方程的解,则k取0;若是特征方程的解,则当delta>0时k取1,当delta=0时k取1.(也既看f(x)中的λ占了几个特征根)
按照这样的理解,我发现是符合第一种形式的f(x)的,但是第二种就让我头疼了.
在第二种形式下,特征根要求是α±β*i的形式,也就是说原式的特征方程需满足delta<0.
比如原式的特征方程为λ^2+4=0,解为λ=±2*i ;
若f(x)=2*cos2x ,则对应的α为0,β为2,而0±2*i正好是原特征方程的根.安找我的理解,f(x)中的λ占了特征方程的两个根,固k应该取2,但相关的题中都是取1.这让为我不能理解.

在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+...在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+q=0若f(x)=Pn(x)*e^(λx),则特解为y*=x^k*Qn(x)*e^(λx)
你对“安找我的理解,f(x)中的λ占了特征方程的两个根,固k应该取2,但相关的题中都是取1.”的疑问其实很简单因为“λ^2+4=0,解为λ=±2*i”都是一重根;
如果你不是数学专业的,那我觉得你的学习态度相当难得,努力吧,你会学的很好的.
更详细的我建议你去看一看用特征方程求解常系数非齐次线性微分方程的计算过程(也就是该方法的证明,建议从复函数角度理解)

呵呵,好好看看高数书就知道了

求一个二阶常系数线性非齐次微分方程的通解!二阶 常系数 线性 非齐次 微分方程二阶 常系数 线性 非齐次 微分方程百度真垃圾 连个学科性人都没有 总结一下一阶、二阶微分方程的解法仅限一阶线性微分方程,全微分方程,常系数齐次、非齐次线性微分方程 . 常系数非齐次线性微分方程 常系数非齐次线性微分方程 常系数非齐次线性微分方程 y′′-3y′+2y=2二阶线性常系数非齐次微分方程的通项如图烦请步骤清楚 求解二阶线性常系数微分方程求详解: 在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+...在二阶的常系数非齐次线性微分方程y''+py'+qy=f(x)中,记特征方程为λ^2+pλ+q=0若f(x)=Pn(x)*e^(λx),则特解为y*=x^k*Qn(x)*e^(λx) 常系数非齐次线性微分方程的特解设法? 常系数非齐次线性微分方程的通解怎么求啊? 一个关于常系数非齐次线性微分方程的问题 求常系数非齐次线性微分方程 常系数线性非齐次微分方程解法可以用于一阶吗常系数线性非齐次微分二阶方程解法可以用于一阶吗?? 常系数线性微分方程问题 高数,关于常系数非齐次线性微分方程在此题中,设了 y* 后,是怎么带入方程的? 常系数线性非齐次微分方程y+y=sinx•sin2x求特解形式 二阶线性常系数齐次微分方程的解法.y'' - y' +y= a (a≠0) 的解法如何,和a=0是一样的吗, 求高数微分方程 y+y'-2y=8sin2x求解常系数线性微分方程