对于集合{θ1,θ2,…,θn}和常数θ0,定义:μ=[cos^2(θ1-θ0)+cos^2(θ2-θ0)+…+cos^2(θn-θ0)]/n为集合{θ1,θ2,…,θn}相对θ0的"余弦方差".求证:集合{π/3,2π/3,π}相对任何常数θ0的"余弦方差"是一个与θ0无关的定

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:48:14

对于集合{θ1,θ2,…,θn}和常数θ0,定义:μ=[cos^2(θ1-θ0)+cos^2(θ2-θ0)+…+cos^2(θn-θ0)]/n为集合{θ1,θ2,…,θn}相对θ0的"余弦方差".求证:集合{π/3,2π/3,π}相对任何常数θ0的"余弦方差"是一个与θ0无关的定
对于集合{θ1,θ2,…,θn}和常数θ0,定义:μ=[cos^2(θ1-θ0)+cos^2(θ2-θ0)+…+cos^2(θn-θ0)]/n为集合{θ1,θ2,…,θn}相对θ0的"余弦方差".求证:集合{π/3,2π/3,π}相对任何常数θ0的"余弦方差"是一个与θ0无关的定值.

对于集合{θ1,θ2,…,θn}和常数θ0,定义:μ=[cos^2(θ1-θ0)+cos^2(θ2-θ0)+…+cos^2(θn-θ0)]/n为集合{θ1,θ2,…,θn}相对θ0的"余弦方差".求证:集合{π/3,2π/3,π}相对任何常数θ0的"余弦方差"是一个与θ0无关的定
按照题目给的算式算出那个余弦方差就行了,会发现能把θ0给约掉.
像这种证明是什么什么的定值,一般就通过题目给出的条件计算,计算过程中是能把那些未知量给消掉得.

对于集合{θ1,θ2,…,θn}和常数θ0,定义:μ=[cos^2(θ1-θ0)+cos^2(θ2-θ0)+…+cos^2(θn-θ0)]/n为集合{θ1,θ2,…,θn}相对θ0的余弦方差.求证:集合{π/3,2π/3,π}相对任何常数θ0的余弦方差是一个与θ0无关的定 对于集合{α1,α2,...,αn}和常数α0定义:μ=(sin(α1-α0)^2+sin(α2-α0)^2+...+sin(αn-α0)^2)/n为集合{α1,α2,...,αn}相对α0的正弦方差;求证:集合{π/2,5π/6,7π/6}相对任何常数α0正弦方差是一个与α0无关的定值. 对于集合N={1,2,3,…n}及其它的每一个空子集,定义一个“交替和”3拜托了各位 对于常数m,n.“mn 对于集合{a1,a2,a3……,an}和常数a0,定义U=sin^(a1-a0)+sin^2(a2-a0)+……+sin^2(an-a0)为集合{a1,a2,a3…对于集合{a1,a2,a3……,an}和常数a0,定义U=sin^(a1-a0)+sin^2(a2-a0)+……+sin^2(an-a0)为集合{a1,a2,a3,……,an}相对a0 交替和定义如下 对于集合N={1,2,3,…,n}的每一个非空子集按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5 给定正整数n和正常数a,对于满足不等式1的所有等差数列{an} ,和式2的最大值怎么求? 是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值 有一道关于集合,对于集合{1,2,……,n}和它的每个非空子集,我们定义“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替的加减各数.例如{1,2,4,6,9}的交替和是9-6+4-2+ 已知集合M={a+2cosθ,a+cosθ,a},集合N={a,asinθ,a(sinθ)^2},且M=N,求实数a和θ的值. 已知集合M={a+2cosθ,a+cosθ,a},集合N={a,asinθ,a(sinθ)^2},且M=N,求实数a和θ的值.RT, 已知集合M={a+2Cos θ ,a+Cos θ ,a},集合N={a,asin θ ,asin平方 θ },且M=N,求实数a和 θ 的值 是否存在常数a,b,c使得等式1*2^2+2*3^3+……+n(n+1)^2=n(n+1)(an^2+bn+c)/12,对于一切正整数n都成立?并证明. 对于集合N={1,2,3,…,n}及其它的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9–6+4–2+1 对于集合N={1,2,3,…,n}及其它的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9–6+4–2+1 等差数列{an}的前n项和为Sn,a1=2,公差为2,在等比数列{bn}中,当n≥2时,b2+b3+……+bn=2^n+p(p为常数)(1)求an和Sn (偶算出来是an=2n Sn=n^2+n)(2)求b1,p和bn(3)若Tn=Sn/bn对于一切正整数n,均有Tn≤C 【【【【高一数学集合证明】】】】对于集合N={1,2,3,……,n}及他的每一个非空子集,定义一个“交替和如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如 对于常数m,n.mn>0是方程mx^2+ny^2=1是椭圆的什么条件.