相似三角形在三角形ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的动点(不与B、C重合),EF垂直于AB,EG垂直于AC,垂足分别为F、G(1)求证:EG比AD=CG比CD;(2)FD与DG是否垂直?若垂直,请给出证明,不
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:39:16
相似三角形在三角形ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的动点(不与B、C重合),EF垂直于AB,EG垂直于AC,垂足分别为F、G(1)求证:EG比AD=CG比CD;(2)FD与DG是否垂直?若垂直,请给出证明,不
相似三角形
在三角形ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的动点(不与B、C重合),EF垂直于AB,EG垂直于AC,垂足分别为F、G
(1)求证:EG比AD=CG比CD;
(2)FD与DG是否垂直?若垂直,请给出证明,不垂直请说明理由
(3)当AB=AC时,三角形FDG为等腰直角三角形吗?说明理由
相似三角形在三角形ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的动点(不与B、C重合),EF垂直于AB,EG垂直于AC,垂足分别为F、G(1)求证:EG比AD=CG比CD;(2)FD与DG是否垂直?若垂直,请给出证明,不
(1)∠C相同,∠ADC=∠EGC=90
所以△ADC∽△EGC
得EG比AD=CG比CD
(2)EF平行AC,EG平行于AB
得,AF/AB=EC/BC=CG/CA
易得∠BAD=∠C
得△BAD∽△ACD
所以AD/DC=AB/AC
所以△AFD∽△CGD
所以∠DGC=∠DFA
所以∠AFD+∠DGA=∠DGC+∠DGA=180
所以∠BAC+∠FDG=180
所以∠FDG=90,所以垂直
(3)AB=AC,所以由2,AF/AB=EC/BC=CG/CA
△AFD全等△CGD
FD=DG
得证
(1)证明:在△ADC和△EGC中,
∵∠ADC=∠EGC,∠C=∠C,
∴△ADC∽△EGC.
∴EG:AD=CG:CD.
(2)FD与DG垂直.
证明如下:
在四边形AFEG中,
∵∠FAG=∠AFE=∠AGE=90°,
∴四边形AFEG为矩形.
∴AF=EG.
∵EGAD=CGCD,
∴AFAD=CGCD...
全部展开
(1)证明:在△ADC和△EGC中,
∵∠ADC=∠EGC,∠C=∠C,
∴△ADC∽△EGC.
∴EG:AD=CG:CD.
(2)FD与DG垂直.
证明如下:
在四边形AFEG中,
∵∠FAG=∠AFE=∠AGE=90°,
∴四边形AFEG为矩形.
∴AF=EG.
∵EGAD=CGCD,
∴AFAD=CGCD.
又∵△ABC为直角三角形,AD⊥BC,
∴∠FAD=∠C=90°-∠DAC,
∴△AFD∽△CGD.
∴∠ADF=∠CDG.
∵∠CDG+∠ADG=90°,
∴∠ADF+∠ADG=90°.
即∠FDG=90°.
∴FD⊥DG.
(3)当AB=AC时,△FDG为等腰直角三角形,理由如下:
∵AB=AC,∠BAC=90°,
∴AD=DC.
∵△AFD∽△CGD,
∴FDGD=ADDC=1.
∴FD=DG.
∵∠FDG=90°,
∴△FDG为等腰直角三角形.
收起
1、证明:
∵AD⊥BC,EG⊥AC
∴∠ADC=∠EGC=90°
∵∠C=∠C
∴△ADC∽△EGC
∴EG/AD=CG/CD
2、因为∠BAC=90°
AD⊥BC
所以∠FAD+∠CAD=90°
∠C+∠CAD=90°
所以∠BAD=∠C
全部展开
1、证明:
∵AD⊥BC,EG⊥AC
∴∠ADC=∠EGC=90°
∵∠C=∠C
∴△ADC∽△EGC
∴EG/AD=CG/CD
2、因为∠BAC=90°
AD⊥BC
所以∠FAD+∠CAD=90°
∠C+∠CAD=90°
所以∠BAD=∠C
又因为EG⊥AC
EF⊥AB
∠BAC=90°
所以四边形AFEG是矩形
所以EG=AF
3、三角形DFG是等腰直角三角形
∵AB=AC,∠BAC=90°,AD⊥BC,
∴AD=CD
∵△AFD∽△CGD
且FD⊥DG
∴△AFD≌△CGD
∴DF=DG
∴三角形DFG是等腰直角三角形
收起