如图,ABCDEFG是圆O的内接正七边形,连结AC,AD并延长AD到P点,使DP等于CD,那么CP与AC相等吗?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:36:31

如图,ABCDEFG是圆O的内接正七边形,连结AC,AD并延长AD到P点,使DP等于CD,那么CP与AC相等吗?
如图,ABCDEFG是圆O的内接正七边形,连结AC,AD并延长AD到P点,使DP等于CD,那么CP与AC相等吗?

如图,ABCDEFG是圆O的内接正七边形,连结AC,AD并延长AD到P点,使DP等于CD,那么CP与AC相等吗?
∵ AB= BC = CD
∴弧AB= 弧BC= 弧CD
即:弧ABC = 2*弧CD
∴∠ADC = 2∠DAC
∵CD= PD
∴∠P = ∠DCP
∴∠ADC = ∠P+∠DCP = 2∠P
∴∠P = ∠DAC
故:AC = Cp