关於常微分的计算将某个模型建模以后得到:dx(t)/dt = 57500 - 2.75*10^-7*exp(x(t)/11) - 76333*(sin(2*pi*60*t))^2x(0) = 250请教各路高手帮我解出x(t),如果有详细解法更加感激也会给予多的报酬,这个方程式经
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:58:27
关於常微分的计算将某个模型建模以后得到:dx(t)/dt = 57500 - 2.75*10^-7*exp(x(t)/11) - 76333*(sin(2*pi*60*t))^2x(0) = 250请教各路高手帮我解出x(t),如果有详细解法更加感激也会给予多的报酬,这个方程式经
关於常微分的计算
将某个模型建模以后得到:
dx(t)/dt = 57500 - 2.75*10^-7*exp(x(t)/11) - 76333*(sin(2*pi*60*t))^2
x(0) = 250
请教各路高手帮我解出x(t),如果有详细解法更加感激也会给予多的报酬,
这个方程式经过一下修改,原本:
dy/dx = 57500 - 2.75*10^-7*exp(y/11) - 76333*(sin(2*pi*60*x))^2
先将复杂的系数设为a1~a3,以减轻复杂度:
dy/dx = a1 - a2*exp(cy) - a3*(sin(x))^2,a1~a3,c都是已知常数。
接著设 z = exp(cy) => y = ln(z)/c,代回原式:
d(ln(z)/c)/dx = a1 - a2*z - a3*(sinx)^2
=> (1/cz)dz/dx = a1 - a2*z - a3*(sinx)^2
=> dz/dx = a1*cz - a2*cz^2 - a3*(sinx)^2*cz,c*a1~a3等都是常数,简化为 :
dz/dx = c1*z - c2*z^2 - c3*z*(sinx)^2 ,c1~c3都是已知常数,且z(0)=exp(cy(0))也是已知常数
求z函数的解
关於常微分的计算将某个模型建模以后得到:dx(t)/dt = 57500 - 2.75*10^-7*exp(x(t)/11) - 76333*(sin(2*pi*60*t))^2x(0) = 250请教各路高手帮我解出x(t),如果有详细解法更加感激也会给予多的报酬,这个方程式经
http://hi.baidu.com/lxwyh
写清楚点,还是有点不明白,但是看样子不难,我给你做,不过你先改改.