在△ABC中,tanC=(sinA+sinB)÷(cosA+cosB) sin(B-A)=cosC 若△ABC面积为3+√3,求边长a,c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:29:14

在△ABC中,tanC=(sinA+sinB)÷(cosA+cosB) sin(B-A)=cosC 若△ABC面积为3+√3,求边长a,c
在△ABC中,tanC=(sinA+sinB)÷(cosA+cosB) sin(B-A)=cosC 若△ABC面积为3+√3,求边长a,c

在△ABC中,tanC=(sinA+sinB)÷(cosA+cosB) sin(B-A)=cosC 若△ABC面积为3+√3,求边长a,c
tanC=tan[(A+B)/2],A+B=2C ,C=60°,sin(B-A)=SIN(120°-2A)=1/2,120°-2A=30°,A=45°,B=75°,sinB=SIN75°=sin(45°+30°)=(√6+√2)/4
1/2a c (√6+√2)/4=3+√3,
a/c=√2/2:√3/2=√2:√3
a=2√2,b=2√3