直角坐标系中,直角AB分别交两坐标轴于A、B两点,A点为(0,2),B点为(2,0).(1)如图,过A做三角形OAB的外角平分线交x轴于E点,过B做BF垂直AE于F,求证:AE=2BF.(如果看不清图,可以在纸上重画一遍
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:49:56
直角坐标系中,直角AB分别交两坐标轴于A、B两点,A点为(0,2),B点为(2,0).(1)如图,过A做三角形OAB的外角平分线交x轴于E点,过B做BF垂直AE于F,求证:AE=2BF.(如果看不清图,可以在纸上重画一遍
直角坐标系中,直角AB分别交两坐标轴于A、B两点,A点为(0,2),B点为(2,0).
(1)如图,过A做三角形OAB的外角平分线交x轴于E点,过B做BF垂直AE于F,求证:AE=2BF.
(如果看不清图,可以在纸上重画一遍,今天晚上10点半以前就要答案)谢谢各位.
直角坐标系中,直角AB分别交两坐标轴于A、B两点,A点为(0,2),B点为(2,0).(1)如图,过A做三角形OAB的外角平分线交x轴于E点,过B做BF垂直AE于F,求证:AE=2BF.(如果看不清图,可以在纸上重画一遍
在EO上作GO=BO=2,
∵OA=OB=2,∴△AOB是等腰直角△,
∴∠OAB=∠ABO=45°,∴∠FAB=﹙180°-45°﹚/2=135°/2,
∴∠AEO=45°/2,
由等腰直角△AGO,得∠AGO=45°,
∴∠AEG=∠EAG=45°/2,∴EG=AG=2√2,
∴E点坐标为E﹙-2√2-2,0﹚,
由E、A两点坐标可以求得EA直线方程为:
y=﹙√2-1﹚x+2,
又∵BF⊥EF,
∴直线FB方程可设:y=[-1/﹙√2-1﹚]x+b,
将B点坐标代入得:
b=2√2+2,
∴y=[-1/﹙√2-1﹚]x+2√2+2,
由EA、BF两条直线方程可以求解F点坐标为F﹙1,√2+1﹚,
∴由两点之间的距离公式得:
BF²=4+2√2,
而AE²=4﹙4+2√2﹚,
即AE²=4BF²,
∴AE=2BF.
角度搞一搞不就行了 你是初中还是高中?初中是不是不能搞角度来的
满意回答那位……你让一个初二上期的学生情何以堪……这个是初二的题啊……看不懂啊……