如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF(3)以线段AE,BF和AB为边构成一个新的三

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:40:38

如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF(3)以线段AE,BF和AB为边构成一个新的三
如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,
连结BP交AC于点F.
﹙1)证明:∠CAE=∠CBF.
(2)证明:AE=BF
(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E和点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使S△ABC=S△ABG,求∠C的取值范围.

如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF(3)以线段AE,BF和AB为边构成一个新的三
证明:(2)∵△ABC是等腰△,CH是底边上的高线,
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.
∵∠ACE=∠BCF,∠CAE=∠CBF,AC=BC,
∴△ACE≌△BCF.
∴AE=BF.
(3)由(2)知△ABG是以AB为底边的等腰三角形,
∴S△ABC=S△ABG.
∴AE=AC.
①当∠C为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;
②当∠C为锐角时,∠A=90°- ∠C,而∠CAE<∠A,要使AE=AC,只需使∠C=∠CEA,
此时,∠CAE=180°-2∠C,
只须180°-2∠C<90°- ∠C,解得60°<∠C<90°.
(也可在△CEA中通过比较∠C和∠CEA的大小而得到结论)

(1)因为 CH是底边上的高线
又∵等腰三角形三线合一
∴CH也是顶角的平分线
∴∠ACP=∠BCP
∵△ABC是等腰三角形
∴CA=CB
在△ACP和△B...

全部展开

(1)因为 CH是底边上的高线
又∵等腰三角形三线合一
∴CH也是顶角的平分线
∴∠ACP=∠BCP
∵△ABC是等腰三角形
∴CA=CB
在△ACP和△BCP中
CA=CB
∠ACP=∠BCP
CP=CP(公共边)
∴△ACP≌△BCP(SAS)
∴∠CAE=∠CBF

收起

如图,在等腰三角形ABC中,CH是底边上的高,点P是线段CH(不与点C、H重合)上任意一点,连接AP并延长交..如图,在等腰三角形ABC中,CH是底边上的高,点P是线段CH(不与点C、H重合)上任意一点,连接AP 轴对称、等腰三角形如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.(1)证明:∠CAE=∠CBF(三线合一)(2)证明:AE=BF(△ACE 如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF 如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF 在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点……在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,链接BP交AC于点F(1)以线 如图,在等腰三角形ABC中,CH是底边的高,点P是线段CH上不与端点重合的任意一点.如图,在等腰三角形ABC中,CH是底边的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连结BP并延 爆难!(越快越好)1.如图1,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点,求证EF=1/2 AB.2.如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交B 在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的的任意一点在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点 连接AP交BC于点E,连接BP交AC于点F.(1)证 如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.求线段AE,BF和AB为边构成一个新的三角形ABG(点E和点F重合于点G),记△ABC和△ABG的 思考思考两题几何题,1如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=1/2AB.过点A作AG//EF,交BE的延长线与点G,求证:△ABE≌△AGE.2如图,在等腰△ABC中,CH是底边上的高 如图,在等腰△ABC中,CH是底边上的高,P是线段CH上不与端点重合的任意一点,连接AB交BC与点E,连接BP交AC连接BP交AC于点F,求证(1)∠CAE=∠CBF (2)AE=BF第一题已完成,第二题不会,请用等腰三角形的知 如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E,连结BP交AC于点F.﹙1)证明:∠CAE=∠CBF.(2)证明:AE=BF(3)以线段AE,BF和AB为边构成一个新的三 如图,在三角形abc中,CH是底边ab的高,点p是线段CH上不与端点的任意一点,连接ap,bp,求证:角cab=角cbp如图,在三角形ABC中,CH是底边AB的高,点p是线段CH上不与端点的任意一点,连接AP,BP,求证:角CBP=角CBP. 如图,在等腰△ABC中,CH是底边是的高线,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC与点P (1)证明:角CAP=角CBP (2)证明:AE=BF (3)以线段AE,BF和AB为边构成一个新的 如图等腰△ABC中AB=AC,AD是底边上的高若AB=5cmBC=6cm则AD=___cm 八年级数学(等腰三角形)快,急,答得好追加!如图所示,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP并延长交BC于点E,连结BP并延长交AC于点F.以线段AE,BF和AB为 期末检测A 上的一条题目、、、如图,在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC于F.question:以线段AE,BF和AB为边构成一 如图,等腰△ABC中,AB=AC,AD是底边上的高,若BD=5cm,∠BAD=30°,则△ABC的周长为___cm?要解答过程