设f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y) 当x0 f(1)=-5 求f(x)在【-2,2】上的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:54:10
设f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y) 当x0 f(1)=-5 求f(x)在【-2,2】上的最大值
设f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y) 当x0 f(1)=-5 求f(x)在【-2,2】上的最大值
设f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y) 当x0 f(1)=-5 求f(x)在【-2,2】上的最大值
(一)由题设可知,令x=2,y=1,则f(2)-f(1)=f(2-1)=f(1).===>f(2)=2f(1)=-10.∴f(2)=-10.又f(x)+f(-x)=0.∴f(-2)=10.(二)设x1<x2.===>x1-x2<0.===>f(x1)-f(x2)=f(x1-x2)>0.===>f(x1)>f(x2).∴在R上,函数f(x)递减,∴在[-2,2]上,f(x)max=f(-2)=10.
设函数f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y),当x0,f(1)=-5,求f(x)在[-2,2]的最大值如题
设f(x)为奇函数,且对任意x,y∈R都有f(x)-f(y)=f(x-y) 当x0 f(1)=-5 求f(x)在【-2,2】上的最大值
设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设函数f(x)是奇函数,对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)
设f(x)为奇函数,对任意的x,y属于R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)
设函数f(x)为奇函数,且对任意x y属于R都有f(x)-f(y)=f(x-y),当x0,f(1)=-5,求f(x)在[-2,2]上的最大值.
已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数
设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)
高一数学函数奇偶性的一道解答题题目是 设函数f(x)为奇函数 且对任意x.y∈R都有f(x)-f(y)=f(x-y) 当x<0时 f(x)>0 f(1)=-5 求f(x)在【-2,2】上的最大值
证明题,设函数f(x)对任意x,y属于R设函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x大于0时,f(x)小于0 1:求证f(x)是奇函数.2:判断f(x)在R上的单调性
设函数fx为奇函数且对任意xy属于R都有fx-fy=f (x-y)当x0 f(1)=-2一,求f(2)的值求f(x)在[-2,2]上的最大值
设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数
设函数f(x)对任意x、y属于R,都有f(x+y)=f(x)+f(y)且x大于0时,f(x)小于0,(1)证明:f(x)为奇函数(2)证明:f(x)在R上为减函数
设函数f x的定义域为R,对任意实数X.Y都有f(x+y)=f(x)+f(y),当x>0时f(x)>0且f(2)=61.求证是奇函数2.证明f(x)在R上是增函数3.在区间[-4,4]上,求f(x)的最值要有具体解答,不懂者勿扰!
设奇函数y=f(x)定义域为R,f(1)=2,且对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)是增函数,则函数f=-f^2(x),在区间[-3,-2]上的最大值是?
高一必修一数学已知函数f(x)是奇函数,且对任意的x,y∈R,都有f(x+y)=f(x )+f(y),且x>0时,f( x)
函数体设f(x)室定义在R上的函数 且对任意实数x,y都有f(x+y)=f(x)+f(y),求证:1、f(x)是奇函 数 2、若当x>0设f(x)室定义在R上的函数 且对任意实数x,y都有f(x+y)=f(x)+f(y),求证:1、f(x)是奇函数 2、若当x>0
设函数f(x)为奇函数,且对任意x,y都有f(x)-f(y)=f(x-y),当x0,f(1)=-5,求f(x)在[-2,2]上的最大值要详细过程 谢谢