相对论内容是什么?1我要爱因斯坦写的原文内容!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:26:13

相对论内容是什么?1我要爱因斯坦写的原文内容!
相对论内容是什么?
1
我要爱因斯坦写的原文内容!

相对论内容是什么?1我要爱因斯坦写的原文内容!
相对论简史
〔英〕史蒂芬•霍金著〔旅美学者〕翟宏营张岚译
十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声.他们想象一种叫"以太"的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是"以太"中的波.
然而,与空间完全充满"以太"的思想相悖的结果不久就出现了:根据"以太"理论应得出,光线传播速度相对于"以太"应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高.但是,一系列实验都没有找到造成光速差别的证据.
在这些实验当中,阿尔波特•迈克尔逊和埃迪沃德•莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的.他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在"以太"中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同.不论你是否运动,光线看起来总是以相对于你同样的速度传播.
爱尔兰物理学家乔治•费兹哥立德和荷兰物理学家亨卓克•洛仑兹,最早认为相对于"以太"运动的物体在运动方向的尺寸会收缩,而相对于"以太"运动的时钟会变慢.而对"以太",费兹哥立德和洛仑兹当时都认为是一种真实存在的物质.
这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特•爱因斯坦的年轻人,插手"以太"说,并一次性永远地解决了光传播速度的问题.
在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于"以太"的运动,因此,关于"以太"的整个概念是多余的.相反,爱因斯坦认为科学定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他们都应该测量到同样的光速.
爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的.
大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的时钟,与存放在实验室中的精确时钟确有时间指示上的差别.如果你想延长你的生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损害.
爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的.虽然相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意见.爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:"以太"所隐含的绝对静止和所有时钟所测量得到的绝对或普适时间.人们不禁要问:相对论是否隐含了任何事物都是相对的而不再会有概念上绝对的标准了?
这种不安从20世纪20年代一直持续到30年代.1921年,爱因斯坦由于对光电效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝尔奖的授予只字未提相对论.
到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了.尽管如此,现在相对论被科学界完全接受,相对论的预言已经被无数的实验所证实.
相对论的一个重要结果是质量与能量的关系.爱因斯坦的假定光速对所有的观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能量.质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程"E=mc2"中,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了.
铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨大的能量.这就是质能方程众多结论中的一个.1939年,第二次世界大战正阴云密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的顾忌,去给当时的美国总统富兰克林•德拉诺•罗斯福写信,劝说美国开始核研究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸.有人因原子弹而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛顿发现了万有引力一样.爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨大的爆炸.
尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律不相容.牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的.
爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题.爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被火箭加速所造成的.(这些都发生在"星际旅行"【注2】的时代之前,爱因斯坦是想到人处在电梯中而不是宇宙飞船中.但我们知道,如果不想让电梯碰撞的事情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头撞在苹果上是等价的.但是,这种加速与重力的等价在地球是圆形的前提下不再成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是不变的.
1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中引入一些调整,重力与加速的等价关系就可以成立.爱因斯坦想象,如果三维空间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明.像行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲,因为时空被重力场弯曲了.
在他的朋友马歇尔•格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德•瑞曼将它们发展起来时,从未想到与真实世界会有联系.1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述.但是,由于爱因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程.
在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】,在很大程度上也未被战争所影响.1915年11月,爱因斯坦最终发现了联系时空弯曲与蕴含其中的能量质量的关系方程式.1915年夏天,在访问哥廷根大学期间,爱因斯坦曾与数学家戴维•希尔波特讨论过他的这个思想,希尔波特早于爱因斯坦几天也找到了同样的方程式.尽管如此,正如希尔波特所承认的,这种新理论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来.这还应感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么大的对比!
关于弯曲时空的新理论叫做"广义相对论",以区别与原初不包含重力的理论,而那个理论被改称为"狭义相对论".1919年,"广义相对论"被以颇为壮观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空中太阳附近一颗恒星位置的微小移动.正如爱因斯坦所预言的:恒星所发出的光线,在经过太阳附近时,由于太阳的引力而弯曲了.这是证明时空弯曲的一个直接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存在于宇宙的最大的革命性的更新.
爱因斯坦的"广义相对论"将"时空"由被动的事件发生背景转化为动态宇宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际仍未解决.宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集.在用"广义相对论"解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他的方程式而适应静态宇宙,爱因斯坦加入了一个称为"宇宙常量"的项,这个"宇宙常量"将时空再弯曲,以使所有的物体分离开,"宇宙"常量引入的排斥效果将平衡物体的相互吸引作用而允许宇宙的长久平衡.
事实上,这成了在理论物理历史上人类丧失的最大机遇之一.如果爱因斯坦继续在这一方向上工作下去而不是变通的引入"宇宙常量",他可能能够预言宇宙是在扩张还是在收缩.然而,直到20年代,当坐落在威尔逊山上的100英寸的天文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变化的可能性才被郑重地加以考虑.换一句话说,宇宙正在扩展,任何两个星系之间的距离正在随着时间的推移而稳定地增加.爱因斯坦后来称"宇宙常量"的提出是他一生中最严重的错误.
"广义相对论"彻底改变了人们对宇宙的起源及归宿的讨论方向.静止的宇宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它就已经是现在的形态了.从另一方面来说,如果现在星系们正在彼此远离,它们在过去的时间里应该是彼此之间更为接近的.在大约150亿年前,它们甚至可能彼此接触,相互重叠,而且它们的密度可能是无穷大.根据"广义相对论",宇宙大爆炸标志着宇宙的起源,时间的开始.从这个意义上说,爱因斯坦不仅仅是过去100年中最伟大的人物,他应该获得人们更长久的尊重.
在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有一丝光线可以逃逸."广义相对论"因此预言时间应终止于黑洞中.但是,广义相对论方程并不适用于时间的开始与终结这两种极端情形.因而这一理论并不能揭示从大爆炸中究竟产生了什么.一些人认为这是上帝万能的一种象征,上帝可以以他想要的方式来开创宇宙.
但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成立的普适原理.在朝这一方向的努力中,我们已取得了一些进展,但距完全理解宇宙的起源还相差甚远.广义相对论不能适用于大爆炸的原因在于,它与20世纪初另一伟大的概念性的突破---量子理论并不相容.量子理论的最初提出是在1900年,当时在柏林工作的麦克斯•普朗发现,从红热物体上发出的辐射可以解释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子.打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都行,你只能买每袋一磅的包装.1905年,爱因斯坦在他撰写的一篇论文中,提到普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子的现象.这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此获得了1921年的诺贝尔奖.
爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳•海森堡、剑桥的保尔•狄拉克以及苏黎士的埃文•薛定谔提出了量子机制,从而展示了描述现实的新画卷.根据他们的理论,小粒子不再具有确定的位置和速度,相反,小粒子的位置测得越精确,它的速度测量就愈不准确.反之亦然.
对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未能接受量子机制.他的著名的"上帝并未在掷骰子"的格言就表达出了这一感受.虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的现象.这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在过去半个世纪内改变整个世界的科技基石.
1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国籍.他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光.纳粹发起了一场反对"犹太科学"及犹太科学家的运动(犹太科学家被驱逐是德国未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标.当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话.
二战后,他敦促盟军设立一个全球机构以控制核武器.1952年,他被刚成立的以色列授予总统职位,但他拒绝了."政治是暂时的,"他写道,"而方程式是永恒的."广义相对论方程是他最好的墓志铭和纪念碑.它们与宇宙一起永不腐朽.
在过去的100年中,世界经历了前所未有的变化.其原因并不在于政治,也不在于经济,而在于科学技术---直接源于先进的基础科学研究的科学技术.没有科学家能比爱因斯坦更代表这种科学的先进性.(本文略有删节)
全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设.
第一个可以这样陈述:
所有惯性参照系中的物理规律是相同的
此处唯一稍有些难懂的地方是所谓的“惯性参照系”.举几个例子就可以解释清楚:

假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸.一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”
不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行.花生的运动同飞机停在地面时一样.
你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的.我们称飞机内部为一个惯性参照系.(“惯性”一词原指牛顿第一运动定律.惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性.惯性参照系是一系列此规律成立的参照系.
另一个例子.让我们考查大地本身.地球的周长约40,000公里.由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动.然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员.译者注)触地传球的时候,从未对此担心过.这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系.因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样.
实际上,除非我们意识到地球在转,否则有些现象会是十分费解的.(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)
例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑.另一个例子.远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏.(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系.但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些).
这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系.爱因斯坦的第一假设使此类系中所有的物理规律都保持不变.运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设.谁说爱因斯坦是天才?

爱因斯坦第二假设
谷锐译 原文:Slaven
19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表.电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电.现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事.
麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中:

(如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧)
麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情.例如:构成这些方程的电磁场可以以振动波的形式在空间传播.当麦克斯韦计算了这些波的速度后,他发现它们都等于光速.这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波.
我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来.
现在我们回到爱因斯坦.
爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同.他的第二假设是简单地将此原则推广到电和磁的规律中.这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立.这些推论中的一个就是爱因斯坦的第二假设:
光在所有惯性系中速度相同
爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性.但为什么它看上去并不合理呢?
火车上的试验
为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画.
火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上.Dave用手中的电筒“发射”光子.

光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动.因此我们得出光子相对于Nolan的速度为400,000,000米/秒.
问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒.那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢?

好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处.
记得吗?将速度相加的决定来得十分简单.一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处.其间的距离不是400,000,000米只有两种可能:
1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米
2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同
尽管听起来很奇怪,但两者实际上都是正确的.
爱因斯坦第二假设
谷锐译 原文:Slaven
时间和空间
我们得出一个自相矛盾的结论.我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触.只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同.
实际上,两者都对.第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”.

长度收缩:
长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩.在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式.但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中.这个原理是:
参照系中运动物体的长度比其静止时的长度要短
下面用图形说明以便于理

上部图形是尺子在参照系中处于静止状态.一个静止物体在其参照系中的长度被称作他的“正确长度”.一个码尺的正确长度是一码.下部图中尺子在运动.用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动.长度收缩原理指出在此参照系中运动的尺子要短一些.
这种收缩并非幻觉.当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短.尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩.下部图中尺子是水平运动的,因此它的水平方向变短.你可能已经注意到,两图中垂直方向的长度是一样的.

时间膨胀:
所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:
某一参照系中的两个事件,它们发生在不同地点时的时间间隔
总比同样两个事件发生在相同地点的时间间隔长.
这更加难懂,我们仍然用图例加以说明:

图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间.然而两个闹钟给出的结果并不相同.我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”.在我们的参照系中,这两个事件在不同的地点发生(A和B).然而,让我们以上半图中闹钟自身的参照系观察这件事情.从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动.因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长.
此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢.最著名的关于时间膨胀的假说通常被成为双生子佯谬.假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来.我们可以将两个人的身体视为一架用年龄计算时间流逝的钟.因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢.结果是,当玛丽返回地球的时候,她将比哈瑞更年轻.年轻多少要看她以多快的速度走了多远.
时间膨胀并非是个疯狂的想法,它已经为实验所证实.最好的例子涉及到一种称 为"介子"的亚原子粒子.一个介子衰变需要多少时间已经被非常精确地测量过.无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长.这就是相对论效应.从运动的介子自身来看,它并没有存在更长的时间.这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了.?
应该加上一句:已经有很多很多的实验证实了相对论的这个推论.(相对论的)其他推论我们以后才能加以证实.我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的.
伽玛参数(γ)
谷锐译 原文:Slaven
现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表.因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢.如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间.为什么你从未发现过这种情况呢?
答案是:这种效应显著与否依赖于你运动速度的快慢.而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的).长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到.而光速约合186,300英里/秒(或3亿米/秒).在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示.这个系数依赖于物体运动的速度.例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米.如果一个钟从A点运动到B点要3秒钟,那么相对于我们的参照系,这个过程持续3/γ秒.
为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式: 这里的关键是分母中的v2/c2.v是我们所讨论的物体的运动速度,c是光速.因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了.因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1.所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化.为了说明此事,下面有一个对应于不同速度的γ值表.(其中)最后一列是米尺在此速度运动时的长度(即1/γ米).


速度 速度
(英里/小时) γ 长度
0 0 1 1
20 米/秒 45 1.0000000000000022 .9999999999999978
100,000 米/秒 224,000 1.000000056 .999999944
.1 c (3千万米/秒) 6千7百万 1.005 .995
.9 c 6亿 2.29 .44
.999 c 6亿7千万 22.4 .045
c 6亿7千万 无穷 0
第一列中c仍旧表示光速..9c等于光速的十分之九.为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时.你看,对于任何合理的速度,γ几乎就是1.因此长度和时间几乎没有变化.在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度).在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的.
宇宙执法