已知双曲线的中心为o,实轴,虚轴的长分别为2a,2b,(a<b),若p,q分别为双曲线上的两点,且op⊥oq,证明1/op^2+1/oq^2是定值(用参数方程)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:53:57
已知双曲线的中心为o,实轴,虚轴的长分别为2a,2b,(a<b),若p,q分别为双曲线上的两点,且op⊥oq,证明1/op^2+1/oq^2是定值(用参数方程)
已知双曲线的中心为o,实轴,虚轴的长分别为2a,2b,(a<b),若p,q分别为双曲线上的两点,且op⊥oq,
证明1/op^2+1/oq^2是定值(用参数方程)
已知双曲线的中心为o,实轴,虚轴的长分别为2a,2b,(a<b),若p,q分别为双曲线上的两点,且op⊥oq,证明1/op^2+1/oq^2是定值(用参数方程)
参数方程真恶心.化简到吐血,自己慢慢看吧
P(acosx,bsinx)
tanα=bsinx/acosx = b/a * tanx
tanx = a/b * tanα
tan^2 x = a^2/b^2 * tan^2 α
cos^2 x = 1/(a^2/b^2 * tan^2 α + 1)
= b^2 / (a^2tan^2 α + b^2)
sin^2 x = a^2tan^2 α / (a^2tan^2 α + b^2)
模OP = 根号(a^2(b^2 / (a^2tan^2 α + b^2)) + b^2(a^2tan^2 α / (a^2tan^2 α + b^2)
= 根号(a^2b^2 / (a^2tan^2 α + b^2) + a^2b^2tan^2 α / (a^2tan^2 α + b^2)))
= 根号(a^2b^2(1+tan^2 α)/ (a^2tan^2 α + b^2)
= ab根号(1/(a^2tan^2α + b^2))/cosα
α'=α+pi/2
1/(模OP^2) +1/(模QO^2)
= cos^2α(a^2tan^2α + b^2)/a^2b^2 + cos^2α'(a^2tan^2α' + b^2)/a^2b^2
= (cos^2α(a^2tan^2α + b^2) + sin^2α(a^2cot^2α + b^2))/a^2b^2
= (a^2tan^2αcos^2α + b^2cos^2α + a^2sin^2αcot^2α + b^2sin^2α))/a^2b^2
= (a^2sin^2α + b^2cos^2α + a^2cos^2α + b^2sin^2α))/a^2b^2
= (a^2*1 + b^2*1)/a^2b^2
= (a^2 + b^2)/a^2b^2
所以1/(模OP^2) +1/(模QO^2)为定值
这个是代数的 设P(x1,y1)Q(x2,y2)
根据题意y1/x1*y2/x2=-1
即x1x2+y1y2=0
设PQ方程:y=kx+m代入椭圆b²x²+a²y²=a²b²
整理:(a²k²+b²)x²+2kma²x+a²m²-a²b²=0
韦达定理:x1+x2=-2kma²/(a²k²+b²),x1*x2=(a²m²-a²b²)/(a²k²+b²)
y1y2=(kx1+m)(kx2+m)=k²x1x2+km(x1+x2)+m²
x1x2+k²x1x2+km(x1+x2)+m²=0
(a²m²-a²b²)/(a²k²+b²)+k²(a²m²-a²b²)/(a²k²+b²)-2k²m²a²/(a²k²+b²)+m²=0
化简:(a²+b²)m²=a²b²(1+k²)
m²/(1+k²)=a²b²/(a²+b²)
|m|/√(1+k²)=ab/√(a²+b²)
点O到直线PQ的距离d=|m|/√(1+k²)=ab/√(a²+b²)为定值
1/OP²+1/OQ²=(OP²+OQ²)/(OP²*OQ²)=PQ²/(PQ*d)²=1/d²=1/[a²b²/(a²+b²)]
=(a²+b²)/(a²b²)=1/a²+1/b²