f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:10:54
f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数
f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数
f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数
是这样的
在区间内取x1>0,x2>1.则在x>0范围内都有:x1×x2>x1>0,所以将等式移项为:f(x1×x2)-f(x1)=f(x2).又任意x>1时有:f(x)>0.即f(x1×x2)-f(x1)=f(x2)>0.即得证
f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数
定义在实数范围内的奇函数f(x)满足:对任意的x1,x2∈[0,正无穷大)(x1≠x2),有f(x2)-f(x1)/x2-x1定义在实数范围内的奇函数f(x)满足:对任意的x1,x2∈[0,正无穷大)(x1≠x2),有f(x2)-f(x1)/x2-x1
设y=f(x) (x属于R)对任意实数x1,x2,满足f(x1)+f(x2)=f(x1*x2),求证f(x)是偶函数
定义在R上的偶函数f(x)满足:对任意的x1,x2属于[0,正无穷)(x1不等于x2),有(f(x2)-f(x1))/(x2-x1)
定义在R上的偶函数f(x)满足:对任意的X1,X2属于【0,正无穷)(X1不=X2),有f(X2)-f(X1)/X2-X1
定义在R上的偶函数f(x)满足:对任意的X1,X2属于【0,正无穷)(X1不=X2),有f(X2)-f(X1)/X2-X1
定义在R上的偶函数f(x)满足:对任意的x1,x2属于(0,正无穷)(x1不等于x2)
已知函数f(x)对任意的正实数x1,x2(x1不等于x2),都有【f(x1)-f(x2)】/(x1-x2)
定义在R上的偶函数f(x)满足:对任意的x1,x2属于[0,正无穷大)(x1不等于x2),有x1-2x分之f(x2)-f(x1),则
设f(x)(x∈R),对任意的实数x1,x2满足f(x1*x2)=f(x1)+f(x2),求证 f(x)为偶函数
函数f(x)对任意正实数x1,x2满足f(x1x2)=f(x1)+f(x2),已知f(8)=3,求f(√2)
已知奇函数f(x)对任意正实数x1x2 (x1≠x2)恒有(x1-x2)[f(x1)-f(x2)]
已知函数f(x) 满足:对任意实数x1f( x2) ,且f(x1-x2)=f(x1)/fx(x2),写出一个满足条件的函数.
若函数f(x)满足:对于任意正实数x1、x2,f(x1x2)=f(x1)+f(x2)恒成立,且当x1f(x2)若函数f(x)满足:对于任意正实数x1、x2,f(x1x2)=f(x1)+f(x2)恒成立,且当x1f(x2),试写出一个满足条件的函数解析式
设y=f(x)(x属于R)对任意实数x1,x2,满足f(x1)+f(x2)=f(x1*x2)求证 (1)f(1)=f(-1)=0 (2)f(x)是偶函数
已知定义在实数上的函数f(x)满足对任意函数,都有f(x1*x2)=f(x1)+f(x2)成立,确定f(x)奇偶性?
定义域为R,且对任意实数x1,x2都满足不等式f(x1+x2/2)小于等于f(x1)+f(x2)/2的所有函数f(x)组成的集合记...定义域为R,且对任意实数x1,x2都满足不等式f(x1+x2/2)小于等于f(x1)+f(x2)/2的所有函数f(x)组成的
若函数f(x)=x^2-ax满足对任意的x1,x2属于[0,1]都有|f(x1)-f(x2)|小于等于2恒成立,求实数a的取值范围.