(1)若{an},{bn}都是等比数列,则数列{A2n},{An*Bn}是等比数列吗(2)一直{an}是等比数列,且m+n=p+q,试比较Am*An与Ap*Aq

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 21:03:58

(1)若{an},{bn}都是等比数列,则数列{A2n},{An*Bn}是等比数列吗(2)一直{an}是等比数列,且m+n=p+q,试比较Am*An与Ap*Aq
(1)若{an},{bn}都是等比数列,则数列{A2n},{An*Bn}是等比数列吗
(2)一直{an}是等比数列,且m+n=p+q,试比较Am*An与Ap*Aq

(1)若{an},{bn}都是等比数列,则数列{A2n},{An*Bn}是等比数列吗(2)一直{an}是等比数列,且m+n=p+q,试比较Am*An与Ap*Aq
(1)设公比分别为p,q
则an=a1*q的(n-1)次方,bn=b1*q的(n-1)次方
A2n=a2*q的2(n-1)次方=a1*q的(2n-1)次方
An*Bn=(a1*p的n-1次方)*(b1*q的n-1次方)=a1b1*(pq)的n-1次方
(2)Am*An=a1的平方*(mn)的n-1次方
Ap*Aq =a1的平方*(pq)的n-1次方
因为m+n=p+q,所以Am*An=Ap*Aq

1 设公比分别为p,q
则 An*Bn=(a1*p的n-1次方)*(b1*q的n-1次方)=a1b1*(pq)的n-1次方

2 显然相等,都等于 a1*a1*公比的(m+n-1)次方
答案 是, 相等

(1)若{an},{bn}都是等比数列,则数列{A2n},{An*Bn}是等比数列吗(2)一直{an}是等比数列,且m+n=p+q,试比较Am*An与Ap*Aq 等比数列通项公式已知{an},an属于N*,Sn=1/8(an+2)2(1)、求证:{an}是等比数列(2)、若b1=1,b2=4,{bn}前n项和为Bn,且Bn+1=(an+1-an + 1)Bn+(an-an=1)Bn-1(n大于等于2),求{bn}通项公式. 设数列{an}、{bn}各项都是正数,a1=1,b1=2,若lgbn,lgan+1,lgbn+1成等差数列,5an,5bn,5an+1成等比数列,求an,bn通项公式 {an},{bn}都是各项为正的数列,对任意的自然数n,都有an,(bn)^2,a(n+1)成等差数列,(bn)^2,a(n+1),[b(n+1)]^2成等比数列(1)求证:{bn}是等差数列(2)若a1=1,b1=√2,Sn=1/a1+1/a2+…+1/an,求Sn 已知{an},{bn}都是各项为正数的数列,都有an,bn^2,an+1成等差数列 ;bn^2,an+1,bn+1^2成等比数列1.试问{bn}是否为等差数列 已知{an}是等比数列,且an>0,若bn=log(2)(an),则 A.{bn}一定是递增的等比数列B.{bn}不可能是等比数列 C.{2b(2n-1)+1}是等差数列 D.{3^(bn)}不是等比数列 题目中“log(2)”,2为下标2. 已知{an}中,a1=1,a 已知{an}是等比数列,且an>0 ,若bn=log(2)(an),则 A.{bn}一定是递增的等比数列B.{bn}不可能是等比数列 C.{2b(2n-1)+1}是等差数列 D.{3^(bn)}不是等比数列题目中“log(2)”2是下标2.已知{an}中,a1=1,a2=2,3a(n 两个数列{An}{Bn}中,An>0,Bn>0,且An,Bn^2,An+1成等差数列,且Bn^2,An+1,Bn+1^2,成等比数列.问题(1)证明{Bn}是等差数列?问题(2)若A2=3A1=3,求lim (B1+B2+…Bn)/An的值? 设数列{an}是等比数列,bn=an+an+1,问{bn}是否为等比数列 若数列an为等比数列,且a1=2,q=3,bn=a3n-1,(n∈N*)求bn的通项公式bn 已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列……已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列.(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否 {an},{bn}都是各项为正数的数列,对任意n∈正整数,{an},{bn}都是各项为正数的数列,对任意n∈正整数,都有an,(bn)^2,a(n+1)成等差数列,(bn)^2,a(n+1),(b(n+1))^2成等比数列,(1)问{bn}是否为等差数列?为什么? 正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列1)证明:数列{√bn}成等差数列(2)若a1=1,b1=2,a2=3,求数列{an},{bn}的通项公式(3)在(2)的前提下求{1/an}的通项公 已知{an}为等比数列 且an=2*3^(n-1) 即首项2 公比3若数列{bn}满足bn=an+((-1)^n)*ln(an) 求数列{bn}的前n项和Sn 数列{an}的首项为1,数列{bn}为等比数列且bn=a(n+1)/an,若b4·b5=2,则a9= 已知{an},{bn}都是各项为正数的数列,都有an,bn^2,an+1成等差数列 ;bn^2,an+1,bn+1^2成等比数列,若a1=1,b1=根号2,求sn=1/a1+1/a2+…1/an 已知{an}是公差不为零的等差数列,{bn}是各项都是正数的等比数列.(1)若a1=1,且a1,a3,a9成等比数列,求数列{an}的通项公式;(2)若b1=1,且b2,0.5b3,2b1,成等差数列,求数列{bn}的通项公式. (1)若两等差数列{an},{bn}的前n项和分别为An,Bn,满足An/Bn=(7n+1)/(4n+27),则a11/b11的值为( )(2)已知等比数列{an},首项为81,数列{bn}满足bn=log3(an),其前n项和为Sn.①证明{bn}为等差数列;