已知α∩β=l,PA⊥α垂足为A,PB⊥β垂足为B,求证 ∠APB与二面角α-l-β互补

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:33:25

已知α∩β=l,PA⊥α垂足为A,PB⊥β垂足为B,求证 ∠APB与二面角α-l-β互补
已知α∩β=l,PA⊥α垂足为A,PB⊥β垂足为B,求证 ∠APB与二面角α-l-β互补

已知α∩β=l,PA⊥α垂足为A,PB⊥β垂足为B,求证 ∠APB与二面角α-l-β互补
首先PA, PB决定的一个平面是垂直于面α也垂直于面β的
假设包含PA,PB的平面和I的交点是C
因为AC和BC垂直于I,所以ACB是二面角α-l-β
然后你看四边形PABC,内角和是360度,减去两个直角,剩下角APB和角ACB加起来等于180度,也就是互补啊

已知二面角α-l-β的平面角为θ, 点P在二面角内,PA⊥α,PB⊥β,A,B为垂足,PA=4,P已知二面角α-l-β的平面角为θ,点P在二面角内,PA⊥α,PB⊥β,A,B为垂足,PA=4,PB=5,设A,B到棱l的距离分别为x,y,当θ变化时,点 已知α∩β=l,PA⊥α垂足为A,PB⊥β垂足为B,求证 ∠APB与二面角α-l-β互补 如图所示,已知PA⊥平面α,PB⊥平面β,垂足分别为A、B,α∩β=l,∠APB=50°,则二面角α-l-β的大小为? 设P为60°的二面角α-L-β内的一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,求p到棱l距离 设P为60°的二面角α-L-β内的一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,求p到棱l距离 设P为60°的二面角α-L-β内的一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长是 已知:α∩β=l,PA⊥α于A,PB⊥β于B,AQ⊥l于Q求证:BQ⊥l 已知点P是二面角α—l—β的两平面外的一点,PA⊥α,垂足为A,PB⊥β,垂足为B,且PA=5,PB=3,AB=7.试求二面角的大小 已知:α∩β=l,PA⊥α于A,PB⊥β于B,AQ⊥l于Q求证:BQ⊥l怎么证明Q∈平面PAB?要用定理的 设P是60度的二面角α-L-β内的一点,PA垂直于平面α,PB垂直于平面β,A.B分别为垂足,PA=4,PB=2,则AB的长是 设P是60°的二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为 (关键是步骤,答案应为2√7, 设P是60°的二面角α—l—β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为()答案是2倍根号7, 如图,已知PA垂直于a,PB垂直于b,垂足分别为A,B,且a相交b=l,求证:l垂直平面APB 已知抛物线C:x^2=4y,直线l:y=-1,PA、PB是曲线C的两切线,切点分别为A、B,若P在l上,证明PA⊥PB 已知抛物线C:x^2=4y,直线l:y=-1,PA、PB是曲线C的两切线,切点分别为A、B,若P在l上,证明PA⊥PB 已知抛物线C:x^2=4y,直线l:y=-1,PA、PB是曲线C的两切线,切点分别为A、B,若P在l上,证明PA⊥PB (1/2)已知点P是二面角阿尔法-l-贝塔的两平面外一点,PA垂直阿尔法,垂足为A,PB垂直贝塔,垂足为B,且PA=...(1/2)已知点P是二面角阿尔法-l-贝塔的两平面外一点,PA垂直阿尔法,垂足为A,PB垂直贝塔,垂足 高中数学证明一道已知二面角α-l-β,P为二面角内一点,过P点作PA⊥α,PB⊥β,A,B为垂足.求证:平面PAB⊥α,平面PAB⊥β.无图,请写出详细过程,可利用反证法证明.谢谢!