巳知.在三角ABC中,角C=90度.点D.P分别在边AC.AB上,且BD=AD,PE垂直BD,PF垂直AD,垂足分别为E.F,1).当角A=30度时.求证:PE+PF=BC.2).当角A不等于30度(角A小于角ABC)时.试问以上结论是否依然正确?如果正确.请加

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:37:48

巳知.在三角ABC中,角C=90度.点D.P分别在边AC.AB上,且BD=AD,PE垂直BD,PF垂直AD,垂足分别为E.F,1).当角A=30度时.求证:PE+PF=BC.2).当角A不等于30度(角A小于角ABC)时.试问以上结论是否依然正确?如果正确.请加
巳知.在三角ABC中,角C=90度.点D.P分别在边AC.AB上,且BD=AD,PE垂直BD,PF垂直AD,垂足分别为E.F,
1).当角A=30度时.求证:PE+PF=BC.
2).当角A不等于30度(角A小于角ABC)时.试问以上结论是否依然正确?如果正确.请加以证明.如果不正确.请说明理由.

巳知.在三角ABC中,角C=90度.点D.P分别在边AC.AB上,且BD=AD,PE垂直BD,PF垂直AD,垂足分别为E.F,1).当角A=30度时.求证:PE+PF=BC.2).当角A不等于30度(角A小于角ABC)时.试问以上结论是否依然正确?如果正确.请加
证明:两题一次性证明,即证明过程没有用条件角A=30度.
连接PD
因为PF⊥AD,故△APD的面积S1=1/2AD•PF
因为PE⊥BD,故△PDB的面积S2=1/2BD•PE
因为∠C=90度,故△ADB的面积S3=1/2AD•BC
又△ADB的面积S3=△APD的面积S1+△PDB的面积S2,故1/2AD•PF+1/2BD•PE=1/2AD•BC
又BD=AD,同时除以1/2AD,得:PE+PF=BC

证明:过P作PG⊥AC于G,因PE⊥BC,∠C=90°
所以:PECG是矩形,CG=PE PG//BC且BD=AD
所以:∠APG=∠B=∠BAD
因为:∠AFP=∠PGA=90° AP=AP
所以:△AFP≌△PGA
所以:PF=AG
所以:PE+PF=CG+AG=AC
由上面的证明可知:当∠A<∠ABC时,D点在BC的延长线上,即...

全部展开

证明:过P作PG⊥AC于G,因PE⊥BC,∠C=90°
所以:PECG是矩形,CG=PE PG//BC且BD=AD
所以:∠APG=∠B=∠BAD
因为:∠AFP=∠PGA=90° AP=AP
所以:△AFP≌△PGA
所以:PF=AG
所以:PE+PF=CG+AG=AC
由上面的证明可知:当∠A<∠ABC时,D点在BC的延长线上,即AD边在△ABC之外,以上的结论仍然正确

收起

本人手动41C 38PF 37C
要看你是指的哪一方面 如果说篮板 C强是没有理由的 如果说得分 PF得分能力相当出色的
首先你要明确C和PF在场上的定位 C的任务按顺序排列是 挡拆-盖帽-篮板-助攻-得分 PF的任务是 得分-盖帽-挡拆-助攻-补板
(注意 PF是补板 不是抢板 而且我所说的是在大型比赛中 实力相当的时候 不要拿和菜鸟打的情况来否定我的意见)

全部展开

本人手动41C 38PF 37C
要看你是指的哪一方面 如果说篮板 C强是没有理由的 如果说得分 PF得分能力相当出色的
首先你要明确C和PF在场上的定位 C的任务按顺序排列是 挡拆-盖帽-篮板-助攻-得分 PF的任务是 得分-盖帽-挡拆-助攻-补板
(注意 PF是补板 不是抢板 而且我所说的是在大型比赛中 实力相当的时候 不要拿和菜鸟打的情况来否定我的意见)
很显然 PF的弹跳是没有任何一个职业可以比的 但是弹跳首要表现真的是拿板跳得高吗? 回答是否定的 卓越的弹跳帮助PF可以在超远的距离3步上蓝或者灌蓝 PF的灌蓝在高手面前只是找盖 但是时远时近的3点可以让人防不胜防 因为你完全不知道他会在什么地方踩3步 那范围太大了 而且就算你看准了他的3步点 他还可以左右换手上篮 尤其是和C一起打双塔时 C在篮下一个非常小的挡人动作就可以保证你的灌蓝不会被盖 所以现在很流行C+PF+PG(SG)
对于C 当你能参加比赛时 已经不是只知道拿板 在篮下站桩等板来的傻C了 挡拆利用C的身体的肥大 虽然移动慢了 但是肥大的身体可以进行有效的挡拆 而C盖帽的能力也是没有人可以比的 我目前43C 板96 帽81 补防3分时 站很远就可以抓下来 就算别人突破进去2分也没什么 从后面饶过去一样的抓 这就是C卓越的盖帽
所以街球里面没有任何一个职业是强的 也没有任何一个职业是弱的 强和弱的区别就是你对职业的认识和定位 以及能不能发挥职业的特长决定

收起

在三角行ABC中,角C=90度,AD平分角BAC,BC=10cm,BD=7cm,则点D到AB的距离是? 如图,在三角行ABC中,角C等于90度,角A,角B的平分线交于点D,DE垂直BC于点E,DF垂直AC于点F,求证:四边形CFDE是正方形. 在三角行,ABC中,角C=90度AC=21Cm.BC=28Cm 求三角行ABC的面积 第二求高CD 在三角行ABC中,角C等于90度,AB=10,tanA=3求ABC的面积 锐角的三角比题目,5题,急 急 今晚一定要.1)在Rt三角形ABC中,角C=90度,CD垂直AB于点D.已知AD=13分之25,BC=12,求sin角ACD、tan角DCB的值.2)在Rt三角形ABC中,角C=90度,AC=5,BC=3.点D在AC上,且DE垂直AB于点E.求 在三角形abc中,角acb=90,ac=bc直线mn经过点c,且AD垂直mn于D,BE垂直mn于e (1)说明三角形ADc全等三角CED(2)说明AD+BE=DE 在三角形ABC中,角C=90度,AC=BC将一块三角板的直角顶点放在斜边AB的中点P处,将此三角形绕点P旋转三角板的两直角边分别交射线AC、CB于点D、点E,图①、②、③是旋转得到的三种图形. 问:三角 在Rt三角行ABC中 角ACB等于九十度 角A等于三十度 CD垂直AB于点D 那么三角行ACD与三角行BCD的面积比为 几何平移在RT三角形ABC中,角C=90度 角B=30度 BC=4 左右平移等边三角形DEF的两个顶点E、F,始终在边BC上,DE、DF分别与AB相交于点G、H,当点F与点C重合时,点D恰好在斜边AB上1.求三角形DEF的边长2.在三角 巳知.在三角ABC中,角C=90度.点D.P分别在边AC.AB上,且BD=AD,PE垂直BD,PF垂直AD,垂足分别为E.F,1).当角A=30度时.求证:PE+PF=BC.2).当角A不等于30度(角A小于角ABC)时.试问以上结论是否依然正确?如果正确.请加 三角形ABC中角ACB=90度AC=BC直线MN经过点C且AD垂直MN于DBE垂直MN于E求证;三角形ADC全等于三角形CEB在三角形ABC中,角ACB=90度,AC=BC,直线MN经过点C,且AD垂直MN于D,BE垂直MN于E.求证:1 三角形ADC全等于三角 如图,在Rt三角心ABC中,∠C=90°,∠A=30°,点D在AC边上,且∠BDC=60°,AD=20求BC的长 如图所示,在三角形ABC中,角C=90度,D,E在BC上,BD=DE=EC=AC,指出图中哪两个三角形相,并证明你的结论 八年级几何题如图,在三角形ABC中,角ABC=90°,AC=BC,BE垂直CE于E,AD垂直CE于D,AD=2.5cm,DE=1.7CM.如图,在三角形ABC中,角ABC=90°,AC=BC,BE垂直CE于E,AD垂直CE于D,AD=2.5cm,DE=1.7CM. (1)求BE长 (2)如果过点C在三角 1.三角形的内部到三角心三边距离相等的点是三角_____的交点2.如图,AB垂直于B,AD垂直鱼D,若CB=CD.且角DAC=30,则角BCD=_____3.在RT三角形ABC中,角C=90,AD平分角BAC交BC鱼D,若DC=7.则点D到AB的距离是_____4已知 已知三角ABC中,角B=90度,若c-a=6,b=2根号17,则三角ABC的面积(关于勾股定理 在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A,C,D三点的圆与斜边AB交于点E,连接DE(1)求证:AC=AE(2)求三角ACD外接圆的半径. 如图,在直角三角形ABC中,角C=90度,AC=BC,D为AB中点,CE=BF,连接DE,DF.试判断三角形DEF是什么样的三角