由f(xy)=f(x)+f(y),判断f(x) 的奇偶性,对实数R内的任意x,y,都满足f(xy)=f(x)+f(y),判断f(x) 的奇偶性,我在网上搜索到的答案都是f(x)为偶函数,令x=y=0,得f(0)=0,然后再令y=0,x任意取,则可得f(x*0)=f(x)+f(0),即f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:06:33
由f(xy)=f(x)+f(y),判断f(x) 的奇偶性,对实数R内的任意x,y,都满足f(xy)=f(x)+f(y),判断f(x) 的奇偶性,我在网上搜索到的答案都是f(x)为偶函数,令x=y=0,得f(0)=0,然后再令y=0,x任意取,则可得f(x*0)=f(x)+f(0),即f(x)
由f(xy)=f(x)+f(y),判断f(x) 的奇偶性,
对实数R内的任意x,y,都满足f(xy)=f(x)+f(y),判断f(x) 的奇偶性,我在网上搜索到的答案都是f(x)为偶函数,
令x=y=0,得f(0)=0,然后再令y=0,x任意取,则可得f(x*0)=f(x)+f(0),即f(x)=0,而由x的任意性,知f(x)就是为0的常数函数,所以f(x)应该既是偶函数,同时也是奇函数啊,可为什么没有人说是奇函数呢,
题目中是f(xy)=f(x)+f(y),不是f(x+y)=f(x)+f(y),另外,是对实数R内的任意x,y,也就是说x,y可以取0
由f(xy)=f(x)+f(y),判断f(x) 的奇偶性,对实数R内的任意x,y,都满足f(xy)=f(x)+f(y),判断f(x) 的奇偶性,我在网上搜索到的答案都是f(x)为偶函数,令x=y=0,得f(0)=0,然后再令y=0,x任意取,则可得f(x*0)=f(x)+f(0),即f(x)
这不是奇函数,比如f(x)=lg|x|
可知满足f(x)+f(y)=lg|x|+lg|y|=lg|xy|=f(xy)
显然,它只是偶函数不是奇函数
这里只是当x不能为0时满足你的要求的例子.
刚才看错了,不过这个题是有点问题,它的条件本身是带有偶函数的性质的
但由于它没有去除掉一些特殊的点,导致解出的方程为f(x)=0恒成立,你说它是奇函数还是偶函数都行.但从性质上讲,证明出的是偶函数,方法如下
令x=y=1,得f(1)=f(1)+f(1)
f(1)=0,
令x=y=-1,得f(1)=f(-1)+f(-1)=0
f(-1)=0
所以,当y=-1时有,f(-x)=f(-1)+f(x)=f(x)偶函数
你不用到f(x)恒为零这一点,无法用这种变换式找到让f(-x)=-f(x)这种关系式