已知x,y都大于等于1,求证:x+y+1/xy=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:38:41

已知x,y都大于等于1,求证:x+y+1/xy=
已知x,y都大于等于1,求证:x+y+1/xy=

已知x,y都大于等于1,求证:x+y+1/xy=
x>=1,y>=1
则(x-1)(y-1)>=0,1>=1/(xy)>0
(x-1)(y-1)>=(x-1)(y-1)/(xy)
xy-x-y+1>=1-1/x-1/y+1/(xy)
x+y+1/(xy)<=1/x+1/y+xy

x>=1,y>=1
则(x-1)(y-1)>=0,1>=1/(xy)>0
(x-1)(y-1)>=(x-1)(y-1)/(xy)
xy-x-y+1>=1-1/x-1/y+1/(xy)
x+y+1/(xy)<=1/x+1/y+xy

两式同乘xy (x+y+1/xy)*xy=x^2*y+x*y^2+1
(1/x+1/y+xy)*xy=y+x+(xy)^2
当x=y时
x^2*y+x*y^2=2*x^3
(xy)^2=x^4
当x=y=1时
2*x^3 =2,x^4=1
...

全部展开

两式同乘xy (x+y+1/xy)*xy=x^2*y+x*y^2+1
(1/x+1/y+xy)*xy=y+x+(xy)^2
当x=y时
x^2*y+x*y^2=2*x^3
(xy)^2=x^4
当x=y=1时
2*x^3 =2,x^4=1
x^2*y+x*y^2+1=2*x^3 +1=2+1=3
y+x+(xy)^2=1+1+x^4=3
两式相等
当x=y>1时
2*x^3当x<>y,时
x^2*y+x*y^2=xy*(x+y)
xy>x+y
x^2*y+x*y^2<(xy)^2
[(x+y+1/xy)*xy=x^2*y+x*y^2+1]<[(1/x+1/y+xy)*xy=y+x+(xy)^2]
即:x+y+1/xy=<1/x+1/y+xy

收起