求解∫[0,x]e^(t^2)dt及f(x)=∫[0,x]e^(-t^2)dt的极值orz错了,应该是f(x)=∫[0,x]te^(-t^2)dt书上给的答案是1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 02:03:36

求解∫[0,x]e^(t^2)dt及f(x)=∫[0,x]e^(-t^2)dt的极值orz错了,应该是f(x)=∫[0,x]te^(-t^2)dt书上给的答案是1
求解∫[0,x]e^(t^2)dt
及f(x)=∫[0,x]e^(-t^2)dt的极值
orz错了,应该是f(x)=∫[0,x]te^(-t^2)dt
书上给的答案是1

求解∫[0,x]e^(t^2)dt及f(x)=∫[0,x]e^(-t^2)dt的极值orz错了,应该是f(x)=∫[0,x]te^(-t^2)dt书上给的答案是1
考察含参变量积分.∫te^(-t^2)dt=-∫e^(-t^2)d(-t^2)=-e^(-t^2)(凑微分法)
由牛顿莱布尼兹公式f(x)=∫[0,x]te^(-t^2)dt=1-e^(-x^2)
显然当x趋于无穷时,有极大值1