f(x)=In(1+x)在x=0处的Taylor展开式为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:39:57

f(x)=In(1+x)在x=0处的Taylor展开式为
f(x)=In(1+x)在x=0处的Taylor展开式为

f(x)=In(1+x)在x=0处的Taylor展开式为
令 g(x) = ln(1+x),g(0) = 0;
[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;
[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;
[ln(1+x)] ''' = 2 / (1+x)^3,g''(0) = 2!;
一般有:[ln(1+x)] ^(k) = (-1)^(k-1) * (k-1)!/ (1+x)^k,g^(k)(0) = (-1)^(k-1) * (k-1)!;
根据泰勒展开式有:
∴ ln(1+x) = x - x^2 / 2 + x^3 / 3 + ......+ (-1)^(n-1) * x^n / n + .

y = ln (1 + x)
dy/dx = 1/ (1 + x)d2y/dx2 = -(1 + x)^-2d3y/dx3 = 2(1 + x)^-3d4y/dx4 = -6(1 + x)^-4d5y/dx5 = 24 (1 +x)^-5.....therefore, f(0) = ln(1+0) = ln1 = 0f'(0) = 1/(1 + 0) = 1f''(0) = -(1+0)^...

全部展开

y = ln (1 + x)
dy/dx = 1/ (1 + x)d2y/dx2 = -(1 + x)^-2d3y/dx3 = 2(1 + x)^-3d4y/dx4 = -6(1 + x)^-4d5y/dx5 = 24 (1 +x)^-5.....therefore, f(0) = ln(1+0) = ln1 = 0f'(0) = 1/(1 + 0) = 1f''(0) = -(1+0)^-2 = -1f'''(0) = 2(1 + 0)^-3 = 2f^4(0) = -6(1 + 0)^-4 = -6f^5(0) = 24 (1 + 0)^-5 = 24maclaurin's series for ln (1+x) = 0 + x - (1/2)x^2 + (2/3)!x^3 - (6/4)!x^4 + (24/5)!x^5+...= x - (1/2)x^2 + (1/3)x^3 - (1/4)x^4 + (1/5)x^5+...

收起

f(x)=In(1+x)在x=0处的Taylor展开式为 求分段函数f(x)=x+1 f(x)=x f(x)=1在x=0和x=1处的极限 若f(x)=x(x-1)(x-2)(x-3)...(x-100),则f(x)在x=0处的导数是多少? 已知f(x)=(x^2-2x+1)^(0.5)/(x-1),求f(1+0),f(1-0),f(x)在x=1处的极限 函数f(x)=[1-cos根号x]/根号x 在x=0处f(x)的极限为? 已知f(x)=In(1+x)-In(1-x),求函数在【0,1/2】上的最小值 函数f(x)=x(x-1)(x-2)...(x-100)在x=0处的导数为? f(x)=x(x+1)(x+2)...(x+n)在x=0处的导数? 已知f(x)对一切x满足xf(x)+3x[f'(x)]^2=1-e^(-x) 若f(x)在x=0处取极值,证明:x=0是f(x)的极小值点 已知f(x)对一切x满足xf(x)+3x[f'(x)]^2=1-e^(-x) 若f(x)在x=0处取极值,证明:x=0是f(x)的极小值点xiexie 已知函数f(x)在x=1处的导数为1,则 lim f(1-x)-f(1+x) /3x x→0 已知命题p:当x∈[1,+∞)时,函数f(x)=√(a-ta^x)(0 f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5)在点x=0处的导数为 已知f(x)=x-1/(x+a)+In(x+1),其中实数a不等于-1.1) 若a=2时,求曲线y=f(x)在(0,f(0))处的切线方程2)当f(x)在x=1处取得极值,试讨论f(x)的单调性 高数 填空,选择1.设1/x是f(x)的 一个原函数,则∫f(x)dx=2.下面说法正确的是A)f(x)在x=x.处连续,则f(x)在x=x.处可导B) f(x)在点(x.,f(x.))处有切线,则f(x)在x=x.处可导C) f(x)在x=x.处可导,则f(x)在x=x.处可微 求函数f(x)=x(x-1)(x-2)……(x-100)在x=0处的导数值,f(x)=x^101+(a1)x^100+(a2)x^99+……+(a99)x^2+(a100)x所以f(x)在x=0处的导数值为a100也就是f(x)中x的系数而f(x)=x(x-1)(x-2)……(x-100)所以此系数为(-1)×(-2)×(-3)×(-4) f(x)在(-∞,+∞) 二阶可导,f(x)/x=1,且f''(x)>0,证明f(x)>=x 定义在(-1,1)上的函数f(x)满足f(-x)+f(x)=0,且f'(x)