计算曲面积分∫∫z^3dS,其中S是半球面z=√(a^2-x^2-y^2)在圆锥面z = √(x^2 + y^2)内部的部分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:42:16

计算曲面积分∫∫z^3dS,其中S是半球面z=√(a^2-x^2-y^2)在圆锥面z = √(x^2 + y^2)内部的部分
计算曲面积分∫∫z^3dS,其中S是半球面z=√(a^2-x^2-y^2)在圆锥面z = √(x^2 + y^2)内部的部分

计算曲面积分∫∫z^3dS,其中S是半球面z=√(a^2-x^2-y^2)在圆锥面z = √(x^2 + y^2)内部的部分
这个因为积分函数中每一个点都是在所给曲面上的,投影面也是曲面,不是坐标不是都满足Z=√a^2-x^2-y^2的,其实只要取z=0就不满足了吧?

计算曲面积分∫∫z^3dS,其中S是半球面z=√(a^2-x^2-y^2)在圆锥面z = √(x^2 + y^2)内部的部分 计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(第一类曲面积分计 第一型曲面积分问题计算∫∫(x^2+y^2)dS 其中S是锥面z^2=3(x^2+y^2)被平面z=0和z=3所截的部分 计算曲面积分I=∫∫D(x+|y|)dS,其中曲面D:|x|+|y|+|z|=1 计算曲面积分∫∫(x^2)dS,其中S为上球面z=根号(1-x^2-y^2),x^2+y^2 计算第二型曲面积分∫∫(x^3+e^ysinz)dydz-3x^2ydzdx+zdxdy,其中S是下半球面z=-根号里1-x^2-y^2的下侧详细过程~~谢谢~~~ 计算曲面积分 ∫∫(x^2+y^2)ds,其中 ∑是上半球面z=根号(4-x^2-y^2) 第一型曲面积分的计算问题.直接说我的困惑.计算第一型曲面积分(x^3)y-z dS,其中S是圆柱面x^2+y^2=1,z在[0,1〕.怎么算.这个问题其实是我自己看错了,本来是dxdy的第二型曲面积分的,但突然想到不 曲面积分,斯托克斯公式问题算不出来.书上答案是12π计算曲面积分∫∫ΣrotA·dS,其中A=(x-z,x∧3+yz,-3xyz),Σ为锥面z=2-√(x∧2+y∧2)在xOy面上方的部分(z≤2),取上侧 计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分 计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0 计算曲面积分 ∫∫(x^2+y^2+z^2)^-0.5ds,其中 ∑是球面x^2+y^2+z^2=a^2(z>0) 计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分 ∫∫s(x+y+z)ds,其中s为上半球面z=√a^2-x^2-y^2详细点,这是一个一类曲面积分的题. 计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧. 计算I=∫∫(x+|y|)dS,其中∑是曲面|x|+|y|+|z|=1 计算第一型曲面积分∫ ∫(s)x^2y^2ds s为上半球面z=根号(R^2-x^-y^2) 第一类曲面积分计算∫∫(ax+by+cz)dS,其中∑:x^2+y^2+z^2=2zR