如图AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证:AG=AC如图,AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证: AG=AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:10:42
如图AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证:AG=AC如图,AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证: AG=AC
如图AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证:AG=AC
如图,AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,
求证: AG=AC
如图AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证:AG=AC如图,AD是三角形ABC的平分线,E为BC中点,EF平行AB交AD于点F,CF的延长线交AB于点G,求证: AG=AC
∵EF∥AB,E是BC中点,那么CE=BE=1/2BC,即CE/BC=1/2
(1)学过平行线等分线段定理:CF=FG
(2)学过中位线定理的逆定理:EF是中位线,那么CF=FG
(3)只学过相似:EF∥AB,那么∠CEF=∠B,CFE=∠CGB
∴△CEF∽△CBG,那么CE/BE=CF/CG=1/2
CF/(CG-CF)=1/(2-1),得:CF/FG=1
∴CF=FG
做FM⊥AB于M,FN⊥AC于N
那么∠FMA=∠FNA=90°
∵AD是三角形ABC的平分线,
∴∠BAD=∠CAD,即∠MAF=∠NAF
∵AF=AF
∴△AMF≌△ANF(AAS)
∴FM=FN
∵CF=FG,FM=FN
∴RT△FMG≌RT△FNC(HL)
∴∠MGF=∠NCF
即∠AGC=∠ACG
∴AG=AC
EF//AB//BG 且BE=EC
得CF=FG
又AD为平分线,
AG=AC
E是BC中点且EF平行于BG
GF=CF
又∠GAF=∠CAF
AF=AF
△GAF全等于△CAF
AG=AC
∵e为bc中点,ef∥bg
∴f为cg中点(中位线)
∴fg=fc
又∵af=af ,∠gad=∠cad
∴△agf≌△acf
∴ag=ac