高等代数问题 若把同构的子空间称作一类,则数域P上n维线性空间共分多少类
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:45:26
高等代数问题 若把同构的子空间称作一类,则数域P上n维线性空间共分多少类
高等代数问题 若把同构的子空间称作一类,则数域P上n维线性空间共分多少类
高等代数问题 若把同构的子空间称作一类,则数域P上n维线性空间共分多少类
n+1类.
线性空间的同构也就是存在可逆变换连接两个空间.因为可逆变换是双射,而且还保持向量加法和数乘,所以可逆的线性变换是同构.
显然,如果把该变换限制在一个子空间上,那么可逆变换保持子空间的维数相等.
反过来,维数相等的子空间总是可以由一个可逆变换连接的.可以这样证明:设子空间V1的基是{a1,a2,...,ak}而子空间V2的基是{b1,b2,...,bk}.那么这两个空间的基分别可以拓展为整个n维空间的一组基{a1,a2,...,an},{b1,b2,...,bn}.从{a1,a2,...,an}到{b1,b2,...,bn}有着唯一的一个线性变换f,也就是n维空间的自同构.这个线性变换f限制在{a1,a2,...,ak}上,就映射到{b1,b2,...,bk}.因此该变换f|V1连接了V1和V2两个空间.
至此我们证明了维数相等的子空间都是同构了.因此维数相等的子空间就可以分为一类.n维线性空间有维数为0,1,2,...,n的子空间,共n+1种.
高等代数问题 若把同构的子空间称作一类,则数域P上n维线性空间共分多少类
帮忙证明一下高等代数:向量空间F[x]可以与它的一个真子空间同构
高等代数关于线性空间不变子空间的问题求解
高等代数,不变子空间
有关高等代数的问题为什么数域P上任意一个n维线性空间都与Pn同构.希望能解释清楚.
高等代数线性子空间和与直和的问题
同构是高等代数吗
高等代数关于寻找线性空间基的问题求解
高等代数关于求空间维数的问题求解
高等代数作业一、 线性方程组的基础解系,不变子空间,线性变换的特征向量,线性空间的同构 二、 判断正误1.多项式f(x)在数域F上是可约的,则f(x)在F上一定有根.2.n维线性空间V上线性变换为数
高等代数线性变换的问题
一道高等代数中简单的求全部不变子空间的题
高等代数关于线性空间的题目
高等代数 线性空间
关于高等代数的欧式空间的标准正交基的求法问题
高等代数同构有等价的意思吗?对偶空间中因为V**是V*的线性函数的空间,而V与V**同构,所以V也可以看做V*的线性函数的空间,所以V与V*互为线性函数的空间,即对偶空间名词的由来,为什么
请问高等代数里如何求全部不变子空间?已知一个具体的线性空间,知道它的基,如何求其全部不变子空间?
高等代数问题:什么是空间,和集合有什么区别?