在数列A(n)中,A(1)=1,A(n+1)=(1+1/n)An+(n+1)/2^n设Bn=An/n,求Bn的通项公式求数列An的前n项和Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:32:03

在数列A(n)中,A(1)=1,A(n+1)=(1+1/n)An+(n+1)/2^n设Bn=An/n,求Bn的通项公式求数列An的前n项和Sn
在数列A(n)中,A(1)=1,A(n+1)=(1+1/n)An+(n+1)/2^n
设Bn=An/n,求Bn的通项公式
求数列An的前n项和Sn

在数列A(n)中,A(1)=1,A(n+1)=(1+1/n)An+(n+1)/2^n设Bn=An/n,求Bn的通项公式求数列An的前n项和Sn
(1)B(1)=A(1)/1=1
由A(n+1)=(1+1/n)A(n)+(n+1)/2^n=(n+1)A(n)/n+(n+1)/2^n
A(n+1)/(n+1)=A(n)/n+1/2^n
即B(n+1)=B(n)+1/2^n
B(n)=B(n-1)+1/2^(n-1)
=B(n-2)+1/2^(n-2)+1/2^(n-1)
=…
=B(1)+1/2+…+1/2^(n-1)
=1+1/2+…+1/2^(n-1)
=2-1/2^(n-1);
(2)A(n)=nB(n)=2n-n/2^(n-1)
S(n)=2(1+2+…+n)-[1+2/2+3/4+…+n/2^(n-1)]=n^2+n-T(n)
其中T(n)=1+2/2+3/4+4/8+…+n/2^(n-1)
2T(n)=2+2/1+3/2+4/4+…+n/2^(n-2)
两式相减T(n)=2+1+1/2+1/4+…+1/2^(n-2)-n/2^(n-1)=4-(n+2)/2^(n-1)
S(n)=n^2+n-4+(n+2)/2^(n-1).

A(n+1)=An+An/n+1/2^n+n/2^n,∴(n+1)Bn+(n+1)/2^n=A(n+1)∴B(n+1)=Bn+1/2^n∴∑{B(n+1)-Bn}=∑1/2^n,故Bn=B1+∑1/2^(n-1),即Bn=2-1/2^(n-1)
An=2n-n/2^(n-1),然后错位相减
Sn=n^2+n-4+(n+2)/2^(n-1)

高中数学题目(数列)在数列(a{n})中,a{1}=1,a{n+1}=a{n}/(1+na{n})求a{n} 括号为下标在数列[a(n)]中,已知a(1)=2,a(n+1)=4a(n)-3n+1,n∈N*.1求证:数列[a(n)—n]是等比数列2设b(n)=a(n)/4^n,求解数列[b(n)]的前n项和 关于等比等差的数学问题~知道的希望速度~~1.在等比数列{a(n)}中,a(n)大于0且a(n+2)=a(n)+a(n+1),则公比等于多少?2.数列{a(n)}中,a(1)=1,2a(n+1)=(1+1/n)的平方.(1)证明数列{a(n)/n的平方}是等比数列 在数列{a(n)}中a1=1,a(n+1)=2a(n)-1,求a(n). 在数列{a(n))中,a1=1,a(n+1)=a(n)^2+4a(n)+2 求数列{a(n)}的通项公式 在数列{a n}中,a1=2 a n+1=a n+Ln(1+1/n).求an 在数列{an}中,a1=2,a(n+1)=4an-3n+1(n为正整数),证明数列{an-n}是等比数列 在数列a(n)中,a(n+1)=(1+1/n)a(n)+(n+1)/2,设b(n)=a(n)/n,则数列a(n)的通项公式是 数列{a(n)}中,a1=1,a(n+1)=2a(n)/a(n)+2,求a(n) 已知数列{a n}中,a1=1,a n+ 1=3a n/a n+ 3(n∈正整数),求通项a已知数列{a n}中,a1=1,a n+ 1=3a n/a n+ 3(n∈正整数),求通项a n 已知数列{a n}中,a1=1,a n+ 1=3a n/a n+ 3(n∈正整数),求通项a已知数列{a n}中,a1=1,a n+ 1=3a n/a n+ 3(n∈正整数),求通项a n 在数列{a n}中,a1=2,a17=66,通项公式是项数n的一次函数.(1)求数列{a n}的通项公式.(2)88是否是数列{a n}中的项. 在数列{an}中,a(1)=2,a(n+1)=4a(n)-3n+1,(1)证明{a(n)-n}为等比数列在数列{an}中,a(1)=2,a(n+1)=4a(n)-3n+1,(1)证明 {a(n)-n}为等比数列(2)若数列{a(n)/2^n}的前n项和为S(n),求证:2^n*S(N)=a(n+1)-2a(n) 高中数学数列公式(要简要的过程)在数列a(n)和b(n)中,a(1)=2,且对任意自然数n,3a(n+1)-a(n)=0,b(n)是a(n)和a(n+1)的等差中项,则b(n)的各项和为_____注:()为下标 在数列{an}中,a1=1,且对于任意实数n,都有a(n+1)=a(n)+n则a100= 在数列{a∨n}中,a∨1=1,a∨n+1=2a∨n+2^n,设b∨n=a∨n/2^n-1,证明数列{b∨n}是等差数列. 对于数列a(n),有lima(n+1)/a(n)=c〈1,证明数列a(n)是无穷小数列 a(n+对于数列a(n),有lima(n+1)/a(n)=c〈1,证明数列a(n)是无穷小数列a(n+1)和a(n)都加了绝对值符号 在数列{an}中,a1=1,a2=2,a(n+1)-3an+2a(n -1)=0(n∈N*,n≥2在数列{an}中,a1=1,a2=2,a(n+1)-3an+2a(n-1)=0(n∈N*,n≥2).⑴.求证:数列{an-a(n-1)}是等比数列;⑵.求数列{an}的通项公式.