证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)g(x)怎么大于等于也小于等于(1-k)x-f(0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:47:15
证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)g(x)怎么大于等于也小于等于(1-k)x-f(0)
证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)
g(x)怎么大于等于也小于等于(1-k)x-f(0)
证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)g(x)怎么大于等于也小于等于(1-k)x-f(0)
容易由条件知道F(x)=kx-f(x)是R上的递增函数,且有|f(x)-f(0)|0时,于是
g(x)=x-f(x)满足
g(x)=x-f(x)+f(0)-f(0)=(1-k)x+【kx-(f(x)-f(0))】-f(0)
>=(1-k)x-f(0)趋于正无穷,当x趋于正无穷时.
类似有g(x)
证明:若函数f(x)在R上连续,对于任意x,y∈R,有|f(x)-f(y)|≤k|x-y|(0<k<1),则f(x)在R上有唯一的不动点a(即f(a)=a)g(x)怎么大于等于也小于等于(1-k)x-f(0)
f(x)对于任意实数x,导函数f'(x)都存在.能否说明该函数在R上连续,为什么
设a是实数.f(x)=a-[2/(2^x+1)] (x∈R).试证明:对于任意a,f(x)在R上为增函数
已知函数f(x)是定义在R上的函数,若对于任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.1.判断函数的奇偶性;2.判断函数f(x)在R上是增函数,还是减函数,并证明你的结论.
已知函数f(x)的定义域为R,并且对于任意x、y属于R满足f(x+y)=f(x)+f(y)(1)证明函数f(x)是奇函数(2)若f(x)在R上是减函数,且f(1)=-2,求f(x)在[-3,3]上的最大值和最小值
高一函数性质证明题f(x)是定义在R上的函数,对于任意x,y∈R,均有f(x+y)=f(x)f(y),当x>0时0
f(x)定义在R上,对任意x y都有f(x+y)=f(x)+f(y),若f(x)在x=0处连续,证明f(x)对一切x均连续.
设 f(x) 是定义在R上的函数,且对于任意x、y ∈R ,恒有 f(x+y)=f(x) f(y), 且x1. 证明:(1)当f(0)=1, 且x
函数y=f(x)定义域在(0,+∞)上,且f(x1)+f(x2),对于任意x>0,f(x)>0,证明f(x)在R上是增函数
高数微分证明题.若函数f(x)在区间【0,1】上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1.证明:(1)存在a∈(1/2,1),使f(a)=a.(2)对于任意的c∈R,存在b∈(0,a),使fˊ(b)-c【f(b)-b】=1.希望会做的人帮忙一
若定义在R上的减函数y=f(x),对于任意的x,y属于R,不等式f(x^2-2x)
设函数f(x)是定义在R上的函数,且对于任意x,y∈R.设函数f(x)是定义在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且当x>0时,f(x)>1.证明:(1)当f(0)=1,且x<0时,0<f(x)
高一数学题定义在R上的函数,对于任意x、y∈R都有定义在R上的函数,对于任意x、y∈R都有f(x+y)+f(x-y)=2f(x)f(y) 且f(0)≠0(1)求证f(0)=1(2)判断f(x)的奇偶性(3)存在常数C≠0,使 ,证明对任意x∈R
定义域在R上的函数y=f(x),有f(x)≠0,当x>0时,f(x)>1,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b) (1)证明f(0)=1 (2)证明对于任意x属于R,恒有f(x)大于0
对于任意xy 有f(x+y)=f(x)f(y)且x>0,f(x)>1,证明f(x)在R上为增函数
设f(x)是定义域在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0,0<f(x)<1.证明:(1)f(0)=1且x<0时,f(x)>1:;(2)f(x)是R上的单调减函数.
设f(x)是定义在R上的函数若存在x2>0对于任意x1∈R都有f(x1)<f(x1+x2)成立则函数f(x)在R上单调递增why错了
设函数y=f(x)定义域为R,当x>0时f(x)>1,且对于任意的x,y∈R有f(x+y)=f(x)·f(y)成立(1)求证:对于任意x属于R,恒有f(x)大于0R,恒有f(x)大于0(2)证明:f(x)在R上是单调递增函数(3)