1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(98×99×100)=?要用方法!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:25:50
1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(98×99×100)=?要用方法!
1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(98×99×100)=?
要用方法!
1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(98×99×100)=?要用方法!
1/(1×2×3)+1/(2×3×4)+1/(3×4×5)+.+1/(98×99×100)
=1/2 × [1/(1×2) - 1/(2×3) + 1/(2×3)-1/(3×4)+ 1/(3×4)-1/(4×5)+.+ 1/(98×99)-1/(99×100)]
=1/2 × [1/(1×2) - 1/(99×100)]
=1/2 × [1/2 - 1/9900]
=1/2 × 4949/9900
=4949/19800
1 2 3 4 ()
1()2()3()4
-1/2+(-1/6)-(-1/4)-2/3
1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),
1/2-(3/4-3/8), 1/2+1/4-1/6 , 2/3+(1/2+1/4),1/2-(3/4-3/8), 1/2+1/4-1/6 , 2/3+(1/2+1/4),
1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),
(-1/2)-(-1/3)-(+1/4)
200*(1-1/2)*(1-1/3)*(1-1/4)*.*(1-1/100)
(1*2)/1+(2*3)/1+(3*4)/1+.+2010*2011/1
数列 1+(1+2)+(1+2+3)+(1+2+3+4)+.+(1+2+3+...+2009)=?
(-1×1/2)+(-1/2×1/3)+(-1/3×1/4)+…+(-1/2008×1/2009)
(-1*1/2)+(-1/2*1/3)+(-1/3*1/4).(-1/2012*1/2013)
计算:2(3+1)(3^2+1)(3^4+1).(3^16+1)+1
1.(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)=2.(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=
(1-2/1)*(1-3/1)*(1-4/1)*.*(1-2007/1)*(1-2008/1)
1/2+(-2/3)-(-4/5)+(-1/2)-(+1/3)
一道简便计算题:1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+.+1/(1+2+3+4+.+100)
(1,1,1).(2,4,8)...3Q