已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且(PC向量+1/2PQ向量)•(PC向量-1/2PQ向量)=0.(1)求动点P的轨迹方程.(2)若EF为圆N:x^2+(y-1)^2=1的任一条直线,求PE向
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:17:51
已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且(PC向量+1/2PQ向量)•(PC向量-1/2PQ向量)=0.(1)求动点P的轨迹方程.(2)若EF为圆N:x^2+(y-1)^2=1的任一条直线,求PE向
已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且(PC向量+1/2PQ向量)•(PC向量-1/2PQ向量)=0.
(1)求动点P的轨迹方程.
(2)若EF为圆N:x^2+(y-1)^2=1的任一条直线,求PE向量•PF向量的最值.
已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,且(PC向量+1/2PQ向量)•(PC向量-1/2PQ向量)=0.(1)求动点P的轨迹方程.(2)若EF为圆N:x^2+(y-1)^2=1的任一条直线,求PE向
已知坐标平面上一定点C(2,0)和直线l:x=8,P为该平面上一动点,作PQ⊥l,垂足为Q,
且(PC+(1/2)PQ)•(PC-(1/2)PQ)=0.
(1)求动点P的轨迹方程.
(2)若EF为圆N:x²+(y-1)²=1的任一条直线,求PE向量•PF向量的最值.
设P点的坐标为(x,y)
(1).向量PC=(2-x,-y),PQ=(8-x,y-y)=(8-x,0);
故PC+(1/2)PQ=(2-x+(8-x)/2,-y)=(6-(3/2)x,-y);PC-(1/2)PQ=(2-x-(8-x)/2,-y)=(-2-x/2,-y);
(PC+(1/2)PQ)•(PC-(1/2)PQ)=[6-(3/2)x](-2-x/2)+(-y)(-y)=-12+(3/4)x²+y²=0
故得P点的轨迹方程为 x²/16+y²/12=1,即P的轨迹是一个a=4,b=2√3,焦点在x轴上的椭圆.
(2).第二问:【EF为圆N:x²+(y-1)²=1的任一条直线】是什么意思?EF是园的任意弦?请明确
一下,不然不好作.
设pq中点A 那么PC=PA (有三角形中线定理)
设P(x,y)
(x-2)^2+y^2=((x-8)/2)^2
化简得3x^2+4y^2=48