设函数f ( x ) 在[ 0 ,a ]上二次可微,且x f〃(x)-f ′(x)>0,则f ′(x)/x在区间 ( 0 ,a )内是( ).A:不增.B:不减 C:单调增加 D:单调减少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:46:43

设函数f ( x ) 在[ 0 ,a ]上二次可微,且x f〃(x)-f ′(x)>0,则f ′(x)/x在区间 ( 0 ,a )内是( ).A:不增.B:不减 C:单调增加 D:单调减少
设函数f ( x ) 在[ 0 ,a ]上二次可微,且x f〃(x)-f ′(x)>0,则f ′(x)/x在区间 ( 0 ,a )内是( ).
A:不增.
B:不减
C:单调增加
D:单调减少

设函数f ( x ) 在[ 0 ,a ]上二次可微,且x f〃(x)-f ′(x)>0,则f ′(x)/x在区间 ( 0 ,a )内是( ).A:不增.B:不减 C:单调增加 D:单调减少
C
x f〃(x)-f ′(x)>0
在区间 ( 0 ,a )[f ′(x)/x]′=[x f〃(x)-f ′(x)]/x^2>0
因此单调递增选C