已知直线y=x+m与椭圆x2/a2+y2/b2=1(a>b>0),相交于A、B,AB中点为M,M恒在定直线y=kx上,试问k是否可以取-2,-1/2,1/2?若不能,说明理由,若能,求出此时椭圆离心率e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:34:47
已知直线y=x+m与椭圆x2/a2+y2/b2=1(a>b>0),相交于A、B,AB中点为M,M恒在定直线y=kx上,试问k是否可以取-2,-1/2,1/2?若不能,说明理由,若能,求出此时椭圆离心率e
已知直线y=x+m与椭圆x2/a2+y2/b2=1(a>b>0),相交于A、B,AB中点为M,M恒在定直线y=kx上,试问k是否可以取-2,-1/2,1/2?若不能,说明理由,若能,求出此时椭圆离心率e
已知直线y=x+m与椭圆x2/a2+y2/b2=1(a>b>0),相交于A、B,AB中点为M,M恒在定直线y=kx上,试问k是否可以取-2,-1/2,1/2?若不能,说明理由,若能,求出此时椭圆离心率e
设交点为A(x1,y1),B(x2,y2),中点为M(u,v)
则 u=(x1+x2)/2,v=(y1+y2)/2;
将交点带入椭圆和直线可得
x1^2/a^2+y1^2/b^2=1 (1)
x2^2/a^2+y2^2/b^2=1 (2)
y1=x1+m (3)
y2=x2+m (4)
联立可解得
u/a^2+v/b^2=0
=> v/u=-b^2/a^2
中点M恒在直线y=kx上,则有
k=y/x=v/u=-b^2/a^2
因对于椭圆,有a>b,∴0
x²/a² + (x + m)²/b² - 1 = 0
(a² + b²)x² + 2a²mx + a²(m² - b²) = 0
x₁ + x₂ = -2a²m/(a² + b²)
y₁ + y...
全部展开
x²/a² + (x + m)²/b² - 1 = 0
(a² + b²)x² + 2a²mx + a²(m² - b²) = 0
x₁ + x₂ = -2a²m/(a² + b²)
y₁ + y₂ = (x₁ + m + x₂ + m)/2 = 2b²m/(a² + b²)
M(-a²m/(a² + b²), b²m/(a² + b²))
M总在直线y = -b²x/a²上
k = -b²/a² < 0
k = 1/2不可能
a >b, 0 < -k < 1, -1 < k < 0, -2不可能
k可能取 -1/2, b²/a² = 1/2, b² = a²/2
e² = c²/a² = (a² - b²)/a² = 1/2
e = √2/2
收起