一个极限求和问题?1/根(2n-1) + 1/[根(2n-1)+根(4n-4)] + 1/[根(4n-4)+根(6n-9)] + ...+ 1/[根(2(i-1)n-(i-1)^2)+根(2in-i^2)] + ...+ 1/[根(2(n-1)*n-(n-1)^2)+根(2n*n-n^2)] 当n趋于无穷大时此式极限为什么为π/4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:51:43

一个极限求和问题?1/根(2n-1) + 1/[根(2n-1)+根(4n-4)] + 1/[根(4n-4)+根(6n-9)] + ...+ 1/[根(2(i-1)n-(i-1)^2)+根(2in-i^2)] + ...+ 1/[根(2(n-1)*n-(n-1)^2)+根(2n*n-n^2)] 当n趋于无穷大时此式极限为什么为π/4
一个极限求和问题?
1/根(2n-1) + 1/[根(2n-1)+根(4n-4)] + 1/[根(4n-4)+根(6n-9)]
+ ...+ 1/[根(2(i-1)n-(i-1)^2)+根(2in-i^2)] + ...+
1/[根(2(n-1)*n-(n-1)^2)+根(2n*n-n^2)]
当n趋于无穷大时此式极限为什么为π/4

一个极限求和问题?1/根(2n-1) + 1/[根(2n-1)+根(4n-4)] + 1/[根(4n-4)+根(6n-9)] + ...+ 1/[根(2(i-1)n-(i-1)^2)+根(2in-i^2)] + ...+ 1/[根(2(n-1)*n-(n-1)^2)+根(2n*n-n^2)] 当n趋于无穷大时此式极限为什么为π/4
引入记号
A=1/{[√(n^2-(n-i+1)^2)]+[√(n^2-(n-i)^2)]}
A1=∑(i从1到n)A
A2=lim(n->∞)A1
B=1/[2√(n^2-(n-i)^2)]
B1=∑(i从1到n)B
B2=lim(n->∞)B1
C=1/[2√(n^2-(n-i+1)^2)]
C1=∑(i从1到n)C,C2=∑(i从1到n+1)C
C3=lim(n->∞)C1,C4=lim(n->∞)C2
因为1/[根(2(i-1)n-(i-1)^2)+根(2in-i^2)]
=1/{[√(n^2-(n-i+1)^2)]+[√(n^2-(n-i)^2)]}
所以 B≤A≤C
B1≤A1≤C1<C2
B2≤A2≤C3<C4
又B=1/n[2√(1-(1-i/n)^2)]
所以B2=∫(0到1){1/2√[1-(1-x)^2]}dx(令1-x=sint)=∫(pi/2到0)[-cost/2cost]dt=∫(0到pi/2)1/2dt=pi/4
同理有C3

考虑数列的通项公式为
ai=1/(√((2i-1)n-(i-1)²)+√(2in-i²))
分子分母同时乘以√((2i-1)n-(i-1)²)-√(2in-i²)得
ai=(√((2i-1)n-(i-1)²)-√(2in-i²))/((2i-1)n-(i-1)²-2in+i²)
=(√(...

全部展开

考虑数列的通项公式为
ai=1/(√((2i-1)n-(i-1)²)+√(2in-i²))
分子分母同时乘以√((2i-1)n-(i-1)²)-√(2in-i²)得
ai=(√((2i-1)n-(i-1)²)-√(2in-i²))/((2i-1)n-(i-1)²-2in+i²)
=(√((2i-1)n-(i-1)²)-√(2in-i²))/(-2n+2i-1)
分子提出一个i,分母提出一个n得
要转换成定积分的形式吧,这样才能求解

收起